Programming
Guide

Keysight MY393A PXle
Performance Vector
Signal Analyzer

e
L

Qig

2

i
o

#f =f i
B eF s
< g ,ﬁ‘@%
\

KEYSIGHT

TECHNOLOGIES

Notices

Copyright Notices

© Keysight Technologies 2014 - 2016

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or
translation into a foreign language)
without prior agreement and written
consent from Keysight Technologies,Inc.
as governed by United States and
international copyright laws.

Manual Part Number
M9393-90007

Published By

Keysight Technologies Ground Floor and
Second Floor, CP-11 Sector-8, IMT
Manesar - 122051 Gurgaon, Haryana,
India

Edition
Edition 2.1, May, 2016

Regulatory Compliance

This product has been designed and
tested in accordance with accepted
industry standards, and has been supplied
in a safe condition. To review the
Declaration of Conformity, go to
http://www.keysight.com/go/conformity

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED "AS IS," AND
IS SUBJECT TO BEING CHANGED,
WITHOUT NOTICE, IN FUTURE EDITIONS.
FURTHER, TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW,
KEYSIGHT DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED, WITH
REGARD TO THIS MANUAL AND ANY
INFORMATION CONTAINED HEREIN,
INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANT
ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS OR
FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH THE

FURNISHING, USE, OR PERFORMANCE OF
THIS DOCUMENT OR OF ANY
INFORMATION CONTAINED HEREIN.

SHOULD KEYSIGHT AND THE USER HAVE A

SEPARATE WRITTEN AGREEMENT WITH
WARRANTY TERMS COVERING THE
MATERIAL IN THIS DOCUMENT THAT
CONFLICT WITH THESE TERMS, THE
WARRANTY TERMS IN THE SEPARATE
AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEMLEVEL
(COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR REGULATORY
COMPLIANCE, UNLESS SPECIFICALLY
STATED.

Technology Licenses

The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in
accordance with the terms of such license.

U.S. Government Rights

The Software is “commercial computer
software,” as defined by Federal Acquisition
Regulation (“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of
Defense FAR Supplement (“DFARS”)
227.7202, the U.S. government acquires
commercial computer software under the
same terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the Software
to U.S. government customers under its
standard commercial license, which is

embodied in its End User License Agreement

(EULA), a copy of which can be found at
http://www.keysight.com/find/sweula. The
license set forth in the EULA represents the
exclusive authority by which the U.S.
government may use, modify, distribute, or
disclose the Software. The EULA and the
license set forth therein, does not require or
permit, among other things, that Keysight:
(1) Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish

to, or otherwise provide, the government
rights in excess of these rights customarily
provided to the public to use, modify,
reproduce, release, perform, display, or
disclose commercial computer software or
commercial computer software
documentation. No additional government
requirements beyond those set forth in
the EULA shall apply, except to the extent
that those terms, rights, or licenses are
explicitly required from all providers of
commercial computer software pursuant
to the FAR and the DFARS and are set
forth specifically in writing elsewhere in
the EULA. Keysight shall be under no
obligation to update, revise or otherwise
modify the Software. With respect to any
technical data as defined by FAR 2.101,
pursuant to FAR 12.211 and 27.404.2 and
DFARS 227.7102, the U.S. government
acquires no greater than Limited Rights as
defined in FAR 27.401 or DFAR 227.7103-
5 (c), as applicable in any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating procedure,
practice, or the like that, if not correctly
performed or adhered to, could result in
damage to the product or loss of
important data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and met.

A WARNING notice denotes a hazard. It
calls attention to an operating procedure,
practice, or the like that, if not correctly
performed or adhered to, could result in
personal injury or death. Do not proceed
beyond a WARNING notice until the
indicated conditions are fully understood
and met.

The following safety precautions should
be observed before using this product and
any associated instrumentation. This
product is intended for use by qualified
personnel who recognize

http://www.keysight.com/go/conformity

shock hazards and are familiar with the
safety precautions required to avoid
possible injury. Read and follow all
installation, operation, and maintenance
information carefully before using the
product.

If this product is not used as specified, the
protection provided by the equipment
could be impaired. This product must be
used in a normal condition (in which all
means for protection are intact) only.

The types of product users are:

— Responsible body is the individual or
group responsible for the use and
maintenance of equipment, for ensuring
that the equipment is operated within its
specifications and operating limits, and
for ensuring operators are adequately
trained.

— Operators use the product for its
intended function. They must be trained
in electrical safety procedures and
proper use of the instrument.They must
be protected from electric shock and
contact with hazardous live circuits.

— Maintenance personnel perform routine
procedures on the product to keep it
operating properly (for example, setting
the line voltage or replacing
consumable materials). Maintenance
procedures are described in the user
documentation.The procedures
explicitly state if the operator may
perform them. Otherwise,they should

be performed only by service personnel.

— Service personnel are trained to work
on live circuits, perform safe
installations, and repair products.Only
properly trained service personnel may
perform installation and service
procedures.

Operator is responsible to maintain safe
operating conditions. To ensure safe
operating conditions, modules should not
be operated beyond the full temperature
range specified in the Environmental and
physical specification. Exceeding safe
operating conditions can result in shorter
lifespans, improper module

performance and user safety issues. When
the modules are in use and operation within
the specified full temperature range is not
maintained, module surface temperatures
may exceed safe handling conditions which
can cause discomfort or burns if touched. In
the event of a module exceeding the full
temperature range, always allow the module
to cool before touching or removing modules
from chassis.

Keysight products are designed for use with
electrical signals that are rated
Measurement Category | and Measurement
Category Il, as described in the International
Electro-technical Commission (IEC)
Standard IEC 60664. Most measurement,
control, and data I/0 signals are
Measurement Category | and must not be
directly connected to mains voltage or to
voltage sources with high transient over-
voltages. Measurement Category |l
connections require protection for high
transient over-voltages often associated with
local AC mains connections.Assume all
measurement, control, and data 1/0
connections are for connection to Category |
sources unless otherwise marked or
described in the user documentation.

Exercise extreme caution when a shock
hazard is present. Lethal voltage may be
present on cable connector jacks or test
fixtures. The American National Standards
Institute (ANSI) states that a shock hazard
exists when voltage levels greater than 30V
RMS, 42.4V peak, or 60VDC are present. A
good safety practice is to expect that
hazardous voltage is present in any unknown
circuit before measuring.

Operators of this product must be protected
from electric shock at all times. The
responsible body must ensure that operators
are prevented access and/or insulated from
every connection point. In some cases,
connections must be exposed to potential
human contact. Product operators in these
circumstances must be trained to protect
themselves from the risk of electric shock. If
the circuit is capable of operating at or
above 1000V,

no conductive part of the circuit may be
exposed.

Do not connect switching cards directly to
unlimited power circuits. They are
intended to be used with impedance-
limited sources. NEVER connect switching
cards directly to AC mains. When
connecting sources to switching cards,
install protective devices to limit fault
current and voltage to the card.

Before operating an instrument, ensure
that the line cord is connected to a
properly grounded power receptacle.
Inspect the connecting cables, test leads,
and jumpers for possible wear, cracks, or
breaks before each use.

When installing equipment where access
to the main power cord is restricted, such
as rack mounting, a separate main input
power disconnect device must be
provided in close proximity to the
equipment and within easy reach of the
operator.

For maximum safety, do not touch the
product, test cables, or any other
instruments while power is applied to the
circuit under test. ALWAYS remove power
from the entire test system and discharge
any capacitors before: connecting or
disconnecting cables or jumpers,
installing or removing switching cards, or
making internal changes, such as
installing or removing jumpers.

Do not touch any object that could
provide a current path to the common
side of the circuit under test or power line
(earth) ground. Always make
measurements with dry hands while
standing on a dry, insulated surface
capable of withstanding the voltage being
measured.

The instrument and accessories must be
used in accordance with its specifications
and operating instructions, or the safety of
the equipment may be impaired.

Do not exceed the maximum signal levels
of the instruments and accessories, as
defined in the specifications and operating
information,and as shown on the
instrument or test fixture panels, or
switching card.

When fuses are used in a product, replace
with the same type and rating for
continued protection against fire hazard.

Chassis connections must only be used as
shield connections for measuring circuits,
NOT as safety earth ground connections.

If you are using a test fixture, keep the lid
closed while power is applied to the
device under test. Safe operation requires
the use of a lid interlock.

Instrumentation and accessories shall not
be connected to humans.

Before performing any maintenance,
disconnect the line cord and all test
cables.

To maintain protection from electric shock
and fire, replacement components in
mains circuits - including the power
transformer, test leads, and input jacks -
must be purchased from Keysight.
Standard fuses with applicable national
safety approvals may be used if the rating
and type are the same. Other components
that are not safety related may be
purchased from other suppliers as long as
they are equivalent to the original
component (note that selected parts
should be purchased only through
Keysight to maintain accuracy and
functionality of the product). If you are
unsure about the applicability of a
replacement component, call an Keysight
office for information.

No operator serviceable parts inside.Refer
servicing to qualified personnel. To
prevent electrical shock do not remove
covers. For continued protection against
fire hazard, replace fuse with same type
and rating.

PRODUCT MARKINGS:

q3

The CE mark is a registered trademark of
the European Community.

&

Australian Communication and Media
Authority mark to indicate regulatory
compliance as a registered supplier.

ICES/NMB-001
ISM GRP.1 CLASS A

This symbol indicates product compliance
with the Canadian Interference-Causing
Equipment Standard (ICES-001). It also
identifies the product is an Industrial
Scientific and Medical Group 1 Class A
product (CISPR 11, Clause 4).

KCC-REM-KST-
BLMboooox

South Korean Class A EMC Declaration. This
equipment is Class A suitable for
professional use and is for use in

electromagnetic environments outside of the

home.

Ag 77| (URE LESHI|RR)

0] 7|17|= Y458 (A &) dRIAEE 7|
J|2M & OjR L= MEXE O] HE B
o|5tA|Z| Bzt of , ZHE Qo] X[YoM

A8 A 58 = oLt

2

This product complies with the WEEE
Directive marketing requirement. The affixed
product label (above) indicates that you
must not discard this electrical/electronic
product in domestic household waste.
Product Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as
“Monitoring and Control instrumentation”
product. Do not dispose in domestic
household waste. To return unwanted
products, contact your local Keysight office,
or for more information see http://about.
keysight.com/en/companyinfo/environment
/takeback.shtml

y
Atad
This symbol indicates the instrument is
sensitive to electrostatic discharge (ESD).
ESD can damage the highly sensitive
components in your instrument. ESD
damage is most likely to occur as the
module is being installed or when cables
are connected or disconnected. Protect
the circuits from ESD damage by wearing
a grounding strap that provides a high
resistance path to ground. Alternatively,
ground yourself to discharge any builtup
static charge by touching the outer shell
of any grounded instrument chassis
before touching the port connectors.

A

This symbol on an instrument means
caution, risk of danger. You should refer
to the operating instructions located in
the user documentation in all cases where
the symbol is marked on the instrument.

&
This symbol indicates the time period
during which no hazardous or toxic
substance elements are expected to leak
or deteriorate during normal use. Forty

years is the expected useful life of the
product.

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Contents

What You Will Learn in this Programming Guide 8
Related WebSItes 9
Related Documentation 9

Additional Related Documentation 11
Documentation Map 13
Overall Process Flow 13

Installing Hardware, Software, and Licenses 15

APIs for the MO393A PXle VSA . 18
IVI Compliant or IVI Class Compliant 18
VI DIIVEr TYPES o 19
VI Driver Hierarchy 20
Instrument-Specific Hierarchies for the M9393A 21
Naming Conventions Used to Program IVI Drivers 23

Creating a Project with [VI-COM Using C-Sharpt 25
Step 1 - Create a Console Application 25
Step 2 - Add References 25
Step 3 - Add Using Statements 26

To Access the IVI Drivers Without Specifying or Typing The Full Path .. 27
Step 4 - Create Instances of the IVI-COM Drivers 27
Step b - Initialize the Driver Instances 27
Step b - Initialize the Driver Instances 27
Initialize() Options 28
Initialize() Parameters 29
MO300A Reference Sharingo 30
Resource Names 32
Step 6 - Write the Program Steps 33
Step 7 -Close the Driver 34
Step 8 - Building and Running a Complete Program Using Visual C-Sharp ... 34
Example Program 1- Code Structure 35
Example Program 1- How to Print Driver Properties, Check for Errors, and
Close Driver SESSIONS . . . oottt 36
DISClaimer 39

Working with PA FEM Measurements 40
Test Challenges Faced by Power Amplifier Testing 40
Performing a Channel Power Measurement, Using Immediate Trigger 41

Example Program 2- Code Structure 42
Example Program 2 - Pseudo-code 43
Example Program 2 - Channel Power Measurement Using Immediate
Trgger o 45
DiSClaimer . . . 48
Performing a WCDMA Power Servo and ACPR Measurement 48

Example Program 3 - Code Structure 48

Example Program 3 - Pseudo-code 49
Example Program 3 - WCDMA Power Servo and ACPR Measurement .. 52

Making Harmonic Measurements with the M9393AVSA 57
Using the M9393A with the Resource Manager (M9000) and Modular X-Apps
(MOOXA) o 58
MO393A LIStMOde . ..o 60
ListMode Set Up 60
M9393A Programming Advanced Topics - Hintsonly 64
Extending the RF Frequency Range (3.6 GHzto 50GHz) 64
Attaining Higher IF Bandwidths Using a Wideband Digitizer 64
Performing Data Streaming With an External Wideband Digitizer 65
Understanding API for Peer-to-Peer Support 65
Differences between the M9391 and M9393 66
Appendix - Verify Instruments Connect Pass Self-Test are Updated 67
Verify that VSG 1 is Connected, Passes Self-Test, and Contains up to Date
FIrmware .. 67
Verify that VSA 1 is Connected, Passes Self-Test, and Contains up to Date
FIrmware .. 67
Appendix - Using Visual Studio 2010 68
GlOSSary .o 69

REfEIENCES . . . 71

Keysight M9393A PXle Performance Vector Signal Analyzer

What You Will Learn in this Programming Guide

This programming guide is intended for individuals who write and run programs to
control test-and-measurement instruments. Specifically, you will learn how to use
Visual Studio 2010 with the .NET Framework to write IVI-COM Console Applications
in Visual C#. Knowledge of Visual Studio 2010 with the .NET Framework and
knowledge of the programming syntax for Visual C# is required.

Our basic user programming model uses the IVI-COM driver directly and allows
customer code to:

- access the IVI-COM driver
- access these Acquisition Modes: 1Q, Spectrum, Stepped, Power and FFT

- control the Keysight M9393A PXle Performance Vector Signal Analyzer
(VSA) and Keysight M9381A PXle Vector Signal Generator (VSG) while
performing PA/FEM Power Measurement Production Tests

- generate waveforms created by Signal Studio software (licenses are
required)

Customer
Code

I

VI Driver
| vSA and VSG Hardware |

IVI-COM Console Applications that are covered in this programming guide are used to
perform PA/FEM acquisition measurements with the M9393A PXle VSA from signals that
are created with the M9381A PXle VSG.

- Example Program 1: How to Print Driver Properties, Check for Errors, and
Close Driver Sessions

- Example Program 2: How to Perform a Channel Power Measurement, Using
Immediate Trigger

- Example Program 3: How to Perform a WCDMA Power Servo and ACPR
Measurement

- Example Program 4: How to Perform Transmitter Tests with 89600 VSA
Software,(Playing Waveforms on M9381A PXle VSGs, Using External
Trigger)

Keysight M9393A PXle Performance Vector Signal Analyzer 8

Related Websites

- Keysight Technologies PXI and AXle Modular Products
- M9393A PXle Vector Signal Analyzer
- M9381A PXle Vector Signal Generator
- Keysight Technologies
= IVI Drivers & Components Downloads
- Keysight I/0 Libraries Suite
- GPIB, USB, & Instrument Control Products
- Keysight VEE Pro
- Technical Support, Manuals, & Downloads
- Contact Keysight Test & Measurement

- IVl Foundation - Usage Guides, Specifications, Shared Components
Downloads

- MSDN Online

Related Documentation
To access documentation related to the Keysight M9393A PXle Performance Vector
Signal Analyzer, use one of the following methods:
- If the product software is installed on your PC, the related documents are
also available in the software installation directory.

Document Description Default Location on 64-bit Format
Windows system

Startup Guide Includes proceduresto C:\Program Files (x86) PDF
help you to unpack, \Keysight\M9393\Help\M9393_StartupGuide.pdf
inspect, install
(software and
hardware), perform
instrument
connections, verify
operability, and
troubleshoot your
product.

Also includes an
annotated block
diagram.

Keysight M9393A PXle Performance Vector Signal Analyzer

http://www.keysight.com/find/Modular
http://www.keysight.com/find/M9393A
http://www.keysight.com/find/M9381A
http://www.keysight.com
http://www.keysight.com/find/ivi
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/io
http://www.keysight.com/find/vee
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org
http://msdn.microsoft.com

Document Description Default Location on 64-bit Format
Windows system
Programming Shows you how to use C:\Program Files (x86) PDF
Guide Visual Studio 2010 \Keysight\M9393\Help\M9393_ProgrammingGuide.
with the .NET pdf
Framework to write IVI-
COM Console
Applications in Visual
Ct.
IVI Driver Provides detailed C:\Program Files (x86) CHM
reference documentation of the \Keysight\M9393\Help\AgM9393.chm (Microsoft
(help system) IVI-COM and IVI-C Help
driver API functions, as Format)
well as information to
help you get started
with using the IVI
drivers in your
application
development
environment.
Soft Front Provides product C:\Program Files (x86) CHM
Panel (SFP) introduction, tour of \Keysight\M9393\Help\M9393_SFP_Help.chm (Microsoft
help system the SFP user interface, Help
how-to procedures (for Format)
example, configuration,
self test, operational
check), and
troubleshooting.
Data Sheet In additionto a C:\Program Files (x86) PDF
detailed product \Keysight\M9393\Help\M9393_DataSheet.pdf
introduction, the data
sheet supplies full
product specifications.
LabVIEW Provides detailed C:\Program Files (x86) CHM
Driver documentation of the \Keysight\M9393\Help\KtM9393_LabVIEW_Help.chm (Microsoft
Reference LabVIEW G Driver AP Help
functions. Format)
10

Keysight M9393A PXle Performance Vector Signal Analyzer

11

Document Description Default Location on 64-bit Format
Windows system
Software Includes recent C:\Program Files (x86) PDF
Release changes, \Keysight\M9393\Help\M9393_SoftwareReleaseNotes.
Notes enhancements, and pdf
bug fixes in the current
release.

Alternatively, you can find these documents under: Start > All Programs >

Keysight > M9393.

To understand the available user documentation in context to your workflow, click

here.

To find the very latest versions of the user documentation, go to the product web
site (www.keysight.com/find/M9393A) and download the files from the Manuals

support page (go to Document Library > Manuals):

Document

Library

Refine the List

By Type of Content
Specifications (1)

———4 llanualz (7)

Rrochures & Promntinns (31

Depending upon your order, you may find the following product documentation

useful.

Additional Related Documentation

Document Description

Location

M3018A PXle Chassis Startup Provides installation and startup information for the

Guide MS018A PXle Chassis.

M9036A PXle Embedded Provides installation and startup information for the
Controller Startup Guide M9036A PXle Embedded Controller.

(optional)

www.keysight.com
/find/M9018A

www.keysight.com
/find/M9036A

Keysight M9393A PXle Performance Vector Signal Analyzer

http://idocs.srs.is.keysight.com/display/mundaka20/Documentation+Map
http://idocs.srs.is.keysight.com/display/mundaka20/Documentation+Map
http://www.keysight.com/find/M9393A
http://www.keysight.com/find/M9018A
http://www.keysight.com/find/M9018A
http://www.keysight.com/find/M9036A
http://www.keysight.com/find/M9036A

Document Description Location

M9037A PXle Embedded Provides unpacking, installation and beginning www.keysight.com
Controller Startup Guide usage information for the M9037A PXle Embedded /find/M9037A
(optional) Controller.

M9021A PCle Cable Interface Provides installation details for the M902TA Gen 2, www.keysight.com

Module Installation Guide x8 PCle cable interface module. /find/M9021A

(optional)

Multiple PXle and AXle Chassis This interactive tool helps you to configure and www.keysight.com

System Configuration Tool install PXle and AXle multiple chassis systems. /find/pxie-
multichassis

M9381A PXle Vector Signal Provides Startup, LabVIEW Driver, and Data sheet www.keysight.com

Generator information of M9381 PXle Vector Signal Generator. /find/M9381

M9169E PXI Switchable-Input Provides Technical Overview document and Service — http://www.
Programmable Step Attenuator ~ and Service Guide. keysight.com/find
Module /M9169E

Keysight M9393A PXle Performance Vector Signal Analyzer 12

http://www.keysight.com/find/M9037A
http://www.keysight.com/find/M9037A
http://www.keysight.com/find/M9021A
http://www.keysight.com/find/M9021A
http://www.keysight.com/find/pxie-multichassis
http://www.keysight.com/find/pxie-multichassis
http://www.keysight.com/find/pxie-multichassis
http://www.keysight.com/find/m9381a
http://www.keysight.com/find/m9381a
http://www.keysight.com/find/M9169E
http://www.keysight.com/find/M9169E
http://www.keysight.com/find/M9169E

Documentation Map

Product web site

Product | - O
CD LTy
v
I Access to all DOCUMENTATION noted below I
Startup Guide Data Sheet Programming Guide
S « Unpack product T [] YY)
= == £ .
‘ * Verify shipment description « Programming
- « Install software . « Technical . Procedures
2 « Install hardware specifications i « Sample
i « Verify operation) Programs
e « Troubleshooting . .
Soft Front Panel (SFP) user interface SFP help system
2= « Theory of operation
« Block diagram
- « Configuration
o * Self test

Contents @ *+Op | check
Driver Help Field calibration
Online Support

« Troubleshooting
‘About.

IVI Driver help system

L e raing s - « IVI-COM and IVI-C driver
* Sample programs

reference

.S

I
plé prog

] {. LabVIEW driver

Context Help
with link to
detailed VI
information

Overall Process Flow
To write and run programs, perform the following steps:

1. Write source code using Microsoft Visual Studio 2010 or later with .NET
Visual C# running on Windows 7.

2. Compile source code using the .NET Framework Library.

Keysight M9393A PXle Performance Vector Signal Analyzer

3. Produce an Assembly.exe file - this file can run directly from Microsoft
Windows without the need for any other programs.

- When using the Visual Studio Integrated Development Environment
(IDE), the Console Applications you write are stored in conceptual
containers called Solutions and Projects.

- You can view and access Solutions and Projects using the Solution
Explorer window (View > Solution Explorer).

Keysight M9393A PXle Performance Vector Signal Analyzer 14

15

Installing Hardware, Software, and Licenses

1. Unpack and inspect all hardware.

2. Verify the shipment contents.

Keysight M9393A PXle Performance Vector Signal Analyzer

3. Install the software. Note the following order when installing software.

a. Install Microsoft Visual Studio 2010 with .NET Visual C# running on
Windows 7.
You can also use a free version of Visual Studio Express 2010 tools
from: http://www.microsoft.com/visualstudio/eng/products/visual-
studio-2010-express
The following steps, defined in the Keysight M9393A PXle VSA Startup
Guide, but repeated here, must be completed before programmatically
controlling the M9393A PXle VSA hardware with IVI drivers.

b. Install Keysight 10 Libraries Suite (IOLS), Version 16.3.17218.1 or
newer; this installation includes Keysight Connections Expert.

c. (Required for MIMO) Install Keysight 89600 Vector Signal Analyzer
Software, Version 16.2 or newer.

d. Install the M9393A PXle Performance VSA driver software, Version
1.0.0.0 or newer.

e. Install the M938xA PXle VSG driver software, Version 1.3.105.0 or
newer.

f. Install the M9018A PXle Chassis driver software, Version 1.3.443.1 or
newer.
Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers
along with Soft Front Panel (SFP) programs and documentation. All of
these items may be downloaded from the Keysight product websites:

- http://www.keysight.com/find/iosuite > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Keysight IO Libraries Suite Recommended.

- http://www.keysight.com/find/89600 (Required for MIMO) >
Select Technical Support > Select the Drivers, Firmware &
Software tab > Download the Instrument Driver that
corresponds to "89600 VSA software".

- http://www.keysight.com/find/m9393a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

- http://www.keysight.com/find/m9381a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

- http://www.keysight.com/find/m3018a > Select Technical
Support > Select the Drivers, Firmware & Software tab >
Download the Instrument Driver.

= http://www.keysight.com/find/ivi - download other installers
for Keysight IVI-COM drivers.

4. Install the hardware modules and make cable connections.

5. Verify operation of the modules (or the system that the modules create).

Keysight M9393A PXle Performance Vector Signal Analyzer 16

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/89600
http://www.keysight.com/find/m9393a
http://www.keysight.com/find/m9381a
http://www.keysight.com/find/m9018a
http://www.keysight.com/find/ivi

17

Before programming or making measurements, conduct a Self-Test on each
M9393A PXle VSA and each M9381A PXle VSG to make sure there are no
problems with the modules, cabling, or backplane trigger mapping.

Once the software and hardware are installed and Self-Test has been performed,
they are ready to be programmatically controlled.

Keysight M9393A PXle Performance Vector Signal Analyzer

APls for the M9393A PXle VSA

The following IVI driver terminology may be used when describing the Application
Programming Interfaces (APIs) for the M9393A PXle VSA.

IVI [Interchangeable Virtual Instruments] — a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code. www.ivifoundation.
org

IVI Instrument Classes (Defined by the VI Foundation)
Currently, there are 13 IVI Instrument Classes defined by the VI Foundation.

- DC Power Supply

- AC Power Supply

- DMM

- Function Generator

- Oscilloscope

- Power Meter

- RF Signal Generator

- Spectrum Analyzer

- Switch

- Upconverter

- Downconverter

- Digitizer

- Counter/Timer

The M9393A PXle VSA does not belong to any of these 13 IVI Instrument Classes
and are therefore described as "NoClass" modules.

VI Compliant or VI Class Compliant

The M9393A PXle VSA is IVI Compliant, but not IVl Class Compliant; it does not
belong to one of the 13 IVI Instrument Classes defined by the IVI Foundation.

- IVI Compliant- means that the IVI driver follows architectural specifications
for these categories:

- Installation

= Inherent Capabilities

- Cross Class Capabilities
- Style

= Custom Instrument API

Keysight M9393A PXle Performance Vector Signal Analyzer 18

http://www.ivifoundation.org
http://www.ivifoundation.org

19

- IVI Class Compliant- means that the IVI driver implements one of the 13 IVI
Instrument Classes

- If an instrument is VI Class Compliant, it is also IVI Compliant

- Provides one of the 13 IVI Instrument Class APIs in addition to a
Custom API

- Custom API may be omitted (unusual)

- Simplifies exchanging instruments

IVI Driver Types

IVI Driver

VI Specific

Driver
MEZE34 FXle WEA
and MO38xA PXle VSG

IVl Class

Driver
13 IV Insgrument

Classas definad by
the IVI Foundation:

- DT Poweer Supply
- AC Poweer Supply
- DM
- Function Generator
- Dscilloscope
Parweer Metar
- RF Signal Generator
- Spectrum Analyzer

V1 Class-Compliant
Specific Driver

IVl Custom - Sitch
Specific Driver - Liponverter
Aghodularisa Downconyerter
- Digitizer

Couiritier Tt

= IVI Driver
- Implements the Inherent Capabilities Specification
- Complies with all of the architecture specifications
- May or may not comply with one of the 13 IVI Instrument Classes
- Is either an IVI Specific Driver or an IVI Class Driver
- IVI Class Driver

- Is an IVI Driver needed only for interchangeability in IVI-C
environments

- The IVI Class may be IVI-defined or customer-defined

Keysight M9393A PXle Performance Vector Signal Analyzer

- IVI Specific Driver

- Is an IVI Driver that is written for a particular instrument such asthe
M9393A PXle VSA

- IVI Class-Compliant Specific Driver

- IVI Specific Driver that complies with one (or more) of the IVI
defined class specifications

- Used when hardware independence is desired
= IVI Custom Specific Driver

- Is an IVI Specific Driver that is not compliant with any one of
the 13 IVl defined class specifications

- Not interchangeable

I\VI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the IVI-
COM driver.

- The core of every IVI-COM driver is a single object with many interfaces.

Keysight M9393A PXle Performance Vector Signal Analyzer 20

- These interfaces are organized into two hierarchies: Class-Compliant
Hierarchy and Instrument-Specific Hierarchy - and both include the
llviDriver interfaces.

- Class-Compliant Hierarchy - Since the M9393A PXle VSA does not
belong to one of the 13 IVI Classes, there is no Class-Compliant
Hierarchy in its IVI Driver.

= Instrument-Specific Hierarchy

- The M9393A PXle VSA's instrument-specific hierarchy has
IAgM9393 at the root (where AgM9393 is the driver name).

- IAgM9393 is the root interface and contains references
to child interfaces, which in turn contain references to
other child interfaces. Collectively, these interfaces
define the Instrument-Specific Hierarchy

- The IlviDriver interfaces are incorporated into both hierarchies: Class-
Compliant Hierarchy and Instrument-Specific Hierarchy.

The llviDriver is the root interface for IVI Inherent Capabilities which
are what the IVl Foundation has established as a set of functions and
attributes that all IVI drivers must include - irrespective of which VI
instrument class the driver supports. These common functions and
attributes are called IVl inherent capabilities and they are
documented in IVI-3.2 — Inherent Capabilities Specification. Drivers
that do not support any IVl instrument class such as the M9393A
PXle VSA must still include these VI inherent capabilities.

= IviDriver

...... 9] Close

- @ DriverOperation
E]....@ Identi’q.-'

...... 2] Initialize

...... 2] Initialized

Instrument-Specific Hierarchies for the M9393A

21 Keysight M9393A PXle Performance Vector Signal Analyzer

[
[

=+ AgM3293Lib
E- & 14gM3393

= Abort : Void

ﬁ AcquisitionMode : AgM33534cquisitionModeEnum
g Apply : Void

4 Arm : Void

Eb Calibration

iz Tlase - Weid
2@ Close : Void

- & DriverOperation

[t & FFTAcquisition

- = Gethequisitionlnfo : Void

- & |dentity

=% Imtialize : Void

28 Initialized : Boolean

- & 1QAcquisition

B4 List
-5 MemoryMode : AgM3383MemoryModeEnum

[& Modules

- & Multidcquisition

[Eh- & MultiChannel Sync

Eb Powerlcquisition
% RestoreDefaultProperties : Void

-4 RF

i SendSoftwareTrigger : Void
Eb Service

[& Spectrumbcquisition

[Status

- & SteppedSpectrumicguisition

- System

-- i Triggers

- Utility

-- % WaitForData : Boolean
B-=% WaitUntilArmed : Boolean
=4 WaitUntilSettled : Boolean
- g WaitlntilTriggered : Boolean
H- =P Enums

-y Errors

[

E

:'._ﬁ warnings

t-A 0 hiDrverlib

The following table lists the instrument-specific hierarchy interfaces for M9393A PXle
VSA:

Keysight M9393A PXle Performance Vector Signal Analyzer

22

23

Keysight M9393A PXle VSA Instrument-Specific Hierarchy

AgM9393 is the driver name

IAgM3393Ex is the root interface

Perform the following steps to view the interfaces available in M9393A PXle VSA

while using Visual Studio:

1. Right-click the AgM9393Lib library file in the References folder from the

Solution Explorer window.

2. Select View in Object Browser.

= p i - 4 .0 Agilent. Aghiaa03 Interop e
| e 4 {} Agilent.AgM9393.Interop
a | References) =0 AQME293

.3 AgMa393Lib J

<3 WiDriverLib

+2 Microsoft.CSharp

«2 System

<3 System.Core

<3 System.Data

<3 System,Data.DatabetExtensions
<3 System.Deployment

<3 System.Drawing
<3 System.Windows.Forms
<3 System.éml
<3 System.¥mlLing
> =] Forml.cs
] Program.cs

» =M AgMI393ABusModeCategoryEnum

» =7 AgMI393AcquisitionInfoEnum

» =M AgMI393AcquisitionMedeEnum

s =7 AgMI393AcquisitionStatusResultEnum

» =7 AgMI393AcquisitionTriggerModeEnum

» =7 AgMI393AlignmentTypeEnum

» =F AgMI393AmplitudeAlignmentTypeEnum

> =F AgMI393ArbExternalTriggerSlopeEnum

» =F AgMI393ArbTriggerSourceEnum

» =F AgMI393ArmSourceOperatorEnum

» =F AgMI393ArmTypeEnum

» =M AgM9393BandsEnum

s =0 AgMO393Board

> “ AgM9393BoardClass

» =0 AgM9393CalibrationStatusEnum

> =F AgMI393ChannelFilterShapeEnum

> “¢ AgM9393Class

» =M AgMI393ClockFrequencyEnum

» =M AgMI393ConversionEnum

» =7 AgMI393DeviceDirectionEnum

» =7 AgMI393DownconverterCalibratedStatusk,

» =M AgMI393DownconverterCalibrationStatus

» =M AgMI393ErrorCodesEnum

» =7 AgMI393FFTAcquisitionLengthEnum

> =0 AgMI393FFTWindowShapeEnum
Al

Naming Conventions Used to Program VI Drivers

General IVI Naming Conventions

= All instrument class names start with "lvi"

- Example: IviScope, IviDmm

- Function names

- One or more words use PascalCasing

- First word should be a verb

[VI-COM Naming Conventions

Keysight M9393A PXle Performance Vector Signal Analyzer

~ Interface naming
- Class compliant: Starts with "llvi"
- I<ClassName>
- Example: IlviScope, [lviDmm

- Sub-interfaces add words to the base name that match the C hierarchy as
close as possible

- Examples: IlviFgenArbitrary, llviFgenArbitraryWaveform
- Defined values

- Enumerations and enum values are used to represent discrete values
in IVI-COM

- <ClassName><descriptive words>Enum
- Example: IviScopeTriggerCouplingEnum
= Enum values don't end in "Enum" but use the last word to differentiate

- Examples: IviScopeTriggerCouplingAC and
IviScopeTriggerCouplingDC

Keysight M9393A PXle Performance Vector Signal Analyzer 24

25

Creating a Project with IVI-COM Using C-Sharp

This tutorial will walk through the various steps required to create a console
application using Visual Studio and C#. It demonstrates how to instantiate two
driver instances, set the resource names and various initialization values, initialize
the two driver instances, print various driver properties to a console for each driver
instance, check drivers for errors and report the errors if any occur, and close both
drivers.

Step 1. - Create a "Console Application"

Step 2. - Add References

Step 3. - Add using Statements

Step 4. - Create an Instance

Step b. - Initialize the Instance

Step 6. - Write the Program Steps (Create a Signal or Perform a Measurement)
Step 7. - Close the Instance

At the end of this tutorial is a complete example program that shows what the
console application looks like if you follow all of these steps.

Step 1 - Create a Console Application

Projects that use a Console Application do not show a Graphical User Interface
(GUI) display.

1. Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C# Console Application.

2. Enter "VsaVsgProperties" as the Name of the project and click OK.
When you select New, Visual Studio will create an empty Program.cs file that
includes some necessary code, including using statements. This code is
required, so do not delete it.

3. Select Project and click Add Reference. The Add Reference dialog appears.
For this step, Solution Explorer must be visible (View > Solution Explorer) and
the "Program.cs" editor window must be visible - select the Program.cs tab
to bring it to the front view.

Step 2 - Add References

In order to access the M9393A PXle VSA and M9381A PXle VSG driver interfaces,
references to their drivers (DLL) must be created.
1. In Solution Explorer, right-click on References and select Add Reference.
2. From the Add Reference dialog, select the COM tab.

3. Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list
of type libraries that begin with "I".)

Keysight M9393A PXle Performance Vector Signal Analyzer

If you have not installed the IVI driver for the M9393A PXle VSA and
M9381A PXle VSG products (as listed in the previous section titled
"Before Programming, Install Hardware, Software, and Software
Licenses"), their IVI drivers will not appear in this list.

Also, the TypeLib Version that appears will depend on the version of the
IVl driver that is installed. The version numbers change over time and
typically increase as new drivers are released. If the TypeLib Version
that is displayed on your system is higher than the ones shown in this
example, your system simply has newer versions - newer versions may
have additional commands available. To get the IVI drivers to appear in
this list, you must close this Add Reference dialog, install the IVI drivers,
and come back to this section and repeat "Step 2 - Add References".

4. Scroll to the IVI section and, using Shift-Ctrl, select the following type
libraries then select OK.

VI AgM938x 1.2 Type Library
VI AgM9393 1.0 Type Library

When any of the references for the AQM9393A or AgM938x are added,
the IVIDriver 1.0 Type Library is also automatically added. This is visible
as IviDriverLib under the project Reference; this reference houses the
interface definitions for IVl inherent capabilities which are located in the
file IviDriverTypelLib.dll (dynamically linked library).

5. These selected type libraries appear under the References node, in Solution
Explorer, as:

4 | 7 References
- AgMI38xLib
{3 AgMI393Lib
+3 IviDriverLib

Your program looks the same as it did before you added the References,
but the difference is that the IVI drivers that you added References to
are now available for use.

To allow your program to access the IVI drivers without specifying full
path names of each interface or enum, you need to add using
statements to your program.

Step 3 - Add Using Statements

All data types (interfaces and enums) are contained within namespaces. (A
namespace is a hierarchical naming scheme for grouping types into logical
categories of related functionality. Design tools, such as Visual Studio, can use
namespaces which makes it easier to browse and reference types in your code.)
The C# using statement allows the type name to be used directly. Without the

Keysight M9393A PXle Performance Vector Signal Analyzer 26

27

using statement, the complete namespace-qualified name must be used. To allow
your program to access the IVI driver without having to type the full path of each
interface or enum, type the following using statements immediately below the
other using statements; the following example illustrates how to add using
statements.

To Access the IVI Drivers Without Specifying or Typing The Full Path

Add the following using statements to your program so you don't have to specify
the entire path when using the drivers:

using lvi.Driver.Interop;
usi ng Keysi ght. AgMB38x. | nt er op;
usi ng Keysi ght. AgMB393. | nt er op;

Step 4 - Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:
- Direct Instantiation
- COM Session Factory

Since the M9393A PXle VSA and M9381A PXle VSG are both considered NoClass
modules(because they do not belong to one of the 13 IVI Classes), the COM
Session Factory is not used to create instances of their IVI-COM drivers. So, the
M9393A PXle VSA and M938xA PXle VSG IVI-COM drivers use direct instantiation.
Because direct instantiation is used, their IVI-COM drivers may not be
interchangeable with other VSA and VSG modules.

To Create Driver Instances

The new operator is used in C# to create an instance of the driver.

| AQMB393 VsaDri ver
| AgMB381 VsgDriver

new AgMP393();
new AgvB381();

Step b - Initialize the Driver Instances

Step 5 - Initialize the Driver Instances

Initialize() isrequired when using any IVl driver; it establishes a
communication link (an "I/0 session") with an instrument and it must be called
before the program can do anything with an instrument or work in simulation mode.
Thelnitialize() method has a number of options that can be defined (see
Initialize Options below). In this example, we prepare the I ni ti al i ze() method
by defining only a few of the parameters, then we call the I ni ti al i ze() method
with those parameters.

Keysight M9393A PXle Performance Vector Signal Analyzer

Initialize() Options

The following are the most commonly used options with the I ni ti al i ze()
method.

-~ string ResourceNanme = PXI[bus]::device[::function]][::
| NSTR]
Example: string ResourceName = "PXl 13::0::0::1NSTR;
PXI 14::0::0::INSTR; PXI 15::0::0:: I NSTR; PXI 16:: 0:: 0: :
| NSTR";
Description: VsgResourceName or VsaResourceName - The driver is
typically initialized using a physical resource name descriptor, often a VISA
resource descriptor.

- bool |dQuery = true;
Description: 1 dQuery - Setting the | dQuer y to false prevents the driver
from verifying that the connected instrument is the one the driver was
written for because if | dQuery is set to true, this will query the instrument
model and fail initialization if the model is not supported by the driver.

- bool Reset = true;
Description: Reset - Setting Reset to true tells the driver to initially reset
the instrument.

string OptionString = "QuerylnstrStatus=true,
Si nul at e=tr ue,

Description: Opti onSt ri ng - Setup the following initialization options:

= - Queryl nstr St at us=t r ue (Specifies whether the VI specific driver
queries the instrument status at the end of each user operation.)

- Si mul at e=t r ue (Setting Si nul at e to true tells the driver that it
should not attempt to connect to a physical instrument, but use a
simulation of the instrument instead.)

- Cache=f al se (Specifies whether or not to cache the value of
properties.)

- I nt er changeCheck=f al se (Specifies whether the IVI specific
driver performs interchangeability checking.)

- RangeCheck=f al se (Specifies whether the IVI specific driver
validates attribute values and function parameters.)

- Recor dCoer ci ons=f al se (Specifies whether the VI specific driver
keeps a list of the value coercions it makes for Vilnt32 and ViReal64
attributes.)

- DriverSetup= Trace=fal se";
Description: Dri ver Set up= (This is used to specify settings that are
supported by the driver, but not defined by IVI. If the Options String
parameter (Opt i onSt ri ng in this example) contains an assignment for the
Driver Setup attribute, the I ni ti al i ze function assumes that everything
following 'Dr i ver Set up="'is part of the assignment.)

Keysight M9393A PXle Performance Vector Signal Analyzer 28

Model =VSGor Model =VSA (Instrument model to use during simulation.)
Tr ace=f al se (If false, an output trace log of all driver calls is not saved in
an XML file.)

If these drivers were installed, additional information can be found under
“Initializing the IVI-COM Driver" from the following:

AgM938x IVI Driver Reference
Start > All Programs > Keysight IVI Drivers > IVI-COM-C Drivers > AgM938x Source
> AgM938x IVI Driver Help

AgM9393 VI Driver Reference
Start > All Programs > Keysight IVI Drivers > IVI-COM-C Drivers > AgM9393A VSA >
AgMI393A IVI Driver Help

Initialize() Parameters

Although the Il niti al i ze() method has a number of options that can be
defined (see Initialize Options above), we are showing this example with a
minimum set of options to help minimize complexity.

/1 The MP300OA PXl e Reference should be included as one
of the nodules in

[l either the MB381A PXle VSG configuration of nodul es
or the M393A PXle VSA configuration of nodul es.

Il

[l 1f the MB300OA PXle Reference is only included in one
configuration

/1 that configuration should be initialized first.

/| See "Understandi ng MD300A Frequency Reference

Shari ng"

string VsgResourceNane = "PXl 8::0::0::1NSTR, PXI 11: : 0: :
0:: I NSTR; PXI 12: : 0: : O: : I NSTR; PXI 13:: 0:: 0: : | NSTR";

string VsaResourceNane = "PXl 14::0::0::1NSTR; PXlI 10: : O: :
0:: I NSTR; PXI 9:: 0:: 0: : | NSTR;

bool |dQuery = true;
bool Reset = true;

string VsgOptionString = "Queryl nstrStatus=true,
Si mul at e=f al se, Driver Setup= Mddel =VSG Trace=fal se";
string VsaOptionString = "QuerylnstrStatus=true,
Si mul at e=f al se, Driver Setup= Mdel =VSA, Trace=fal se";

/[l Initialize the drivers
VsgDriver.Initialize(VsgResourceNane, |dQuery, Reset,
VsgOptionString);

Consol e. WiteLine("VSG Driver Initialized");

Keysight M9393A PXle Performance Vector Signal Analyzer

VsaDriver.lnitialize(VsaResourceNane, |dQuery, Reset,
VsaOptionString);
Consol e. WiteLine("VSA Driver Initialized");

fregion Initialize Driver Instances
string VsgResourceNams = "PXIS::0::0::INSTR;FXI11::
string VesaResourceMame = "BHI14::0::0::IMST

bool Idguery = true;

bool Reset = true;
string VsgOptionString = "QuerviInstrStatus=true, Simulate=false, DriverSetup= Model=V3G, race=fals=";
string VsaOption3tring = "gueryInstr3tatus=true, 3imulate=false, DriwverSetup= Model=V3R, Trace=false";
VsgDriver.Initialize (VsgResourceName, I ery, Reset, VsgOptionString):

WriteLine ("V5G Driwer Initialized");
VsaDriver.Initialize (VeaResourceNames, IdQuery, Reset, VsaOptionZtring):

: W Eynid [AgModularVsa nitialize(string ResourceMName, bool [dQuery, bool Reget, string OptionString)
#endreglonThe documentation cache is still being constructad. Please try again in a few seconds.)

The above example shows how IntelliSense is invoked by simply rolling the cursor
over the word "Initialize".

One of the key advantages of using C# in the Microsoft Visual Studio Integrated
Development Environment (IDE) is IntelliSense. IntelliSense is a form of auto-
completion for variable names and functions and a convenient way to access
parameter lists and ensure correct syntax. This feature also enhances software
development by reducing the amount of keyboard input required.

M9300A Reference Sharing

The M3300A PXle Reference can be shared by up to five configurations of modules
that can be made up of the M3393A PXle VSA or the M9381A PXle VSG or both.
The M3300A PXle Reference must be included as one of the modules in at least
one of these configurations. The configuration of modules that is initialized first
must include the M9300A PXle Reference so that the other configurations that
depend on the reference signal get the signal they are expecting. If the
configuration of modules that is initialized first does not include the M9300A PXle
Reference, unlock errors will occur.

Example: M9300A PXle Reference with M9381A PXle VSG

The M9381A PXle VSG should be initialized first before initializing the VSA if:
- M9381A PXle VSG configuration of modules includes:

M9311A PXle Modulator

M9310A PXle Source Output

M9301A PXle Synthesizer

M9300A PXle Reference
Note that the M9300A PXle Reference is part of the M9381A PXle
VSG configuration of modules.

string VsgResourceName = "PXI 8::0::0::1NSTR;, PXI 11: : 0: : 0: : | NSTR;
PXI'12::0::0:: 1 NSTR; PXI 13: : 0: : O: : | NSTR"

Keysight M9393A PXle Performance Vector Signal Analyzer 30

- M9393A PXle VSA configuration of modules includes:
- M9308A PXle Synthesizer
- M9365A PXle Downconverter
- M9214A PXle IF Digitizer
string VsaResourceNanme = "PXI14::0::0::1NSTR; PXI 10: : 0: : 0: : | NSTR
PXI 9::0::0::1NSTR";
Example: M9300A PXle Reference with M9393A PXle VSA

The M9393A PXle VSA should be initialized first before initializing the M9381A PXle
VSG if:

- M9381A PXle VSG configuration of modules includes:
-~ M9311A PXle Modulator
- M9310A PXle Source Output
- M9301A PXle Synthesizer
string VsgResourceNane = "PXI 8::0::0::1NSTR PXI 11::0::0::
| NSTR; PXI 12:: 0::0: : I NSTR";
- M9393A PXle VSA configuration of modules includes:

- M9300A PXle Reference*
Note that the M9300A PXle Reference is part of the M9393A PXle
VSA configuration of modules.

- M9308A PXle Synthesizer

- M9365A PXle Downconverter

- M9214A PXle IF Digitizer
string VsaResourceNane = "PXl 14::0::0:: I NSTR; PXI 10: : 0:: 0: :
I NSTR; PX1 9::0::0::INSTR;, PXI 13::0::0:: 1 NSTR;
Example: M9300A PXle Reference Shared With Both Modules

The M9393A PXle VSA or the M9381A PXle VSG can be initialized first since the
M9300A PXle Reference is included in both configurations of modules:

- M9381A PXle VSG configuration of modules includes:
M9311A PXle Modulator

M9310A PXle Source Output

M9301A PXle Synthesizer

M9300A PXle Reference*
Note that the M9300A PXle Reference is part of the M9381A PXle
VSG configuration of modules.

string VsgResourceName = "PXI 8::0::0::1NSTR, PXl 11: : 0: : 0: : I NSTR
PX112::0::0::INSTR"; PXI 13:: 0: : 0: : | NSTR;

Keysight M9393A PXle Performance Vector Signal Analyzer

- M9393A PXle VSA configuration of modules includes:

- M9300A PXle Reference*
Note that the M9300A PXle Reference is part of the M9393A PXle
VSA configuration of modules.

- M9O3508A PXle Synthesizer

- M9365A PXle Downconverter

- M9214A PXle IF Digitizer
string VsaResourceNanme = "PXI 14::0::0:: 1 NSTR; PXI 10:: 0:: 0: : | NSTR;
PXI9::0::0::INSTR, PXI 13::0:: 0: : | NSTR;

Resource Names

If you are using Simulate Mode, you can set the Resource Name address string to:

string VsaResourceName = "% ;
string VsgResourceNane = "%';

If you are actually establishing a communication link (an "I/O session") with an
instrument, you need to determine the Resource Name address string (VISA
address string) that is needed.You can use an |0 application such as Keysight
Connection Expert, Keysight Command Expert, National Instruments Measurement
and Automation Explorer (MAX), or you can use the Keysight product's Soft Front
Panel (SFP) to get the physical Resource Name string.

For example, you might get the following Resource Name address string.

string VsgResourceNanme = "PXI8::0::0::1INSTR; PXI 11::0::0::
| NSTR; PXI 12: : 0:: 0: : INSTR; PXI 13:: 0:: 0:: | NSTR";

Where the module arrangement in slots is as shown below:

ModuleName M9311A PXle M9310A PXle Source M9301A PXle M9300A PXle
Modulator Output Synthesizer Reference

Slot Number 2 4 5 6

VISA Address PXI8::0::0:INSTR; PXI11::0::0::INSTR; PX112::0::0::INSTR; PX113::0::0::INSTR;

(The slot used by a particular module can be determined from the Connect to
Instrument dialog.)

Similarly, you might use the M9393A Soft Front Panel to construct the Resource
Name address string.

Keysight M9393A PXle Performance Vector Signal Analyzer 32

33

Step 6 - Write the Program Steps

At this point, you can add program steps that use the driver instances to perform
tasks.
Using the Soft Front Panel to Write Program Commands

You may find it useful when developing a program to use the instrument's Soft
Front Panel (SFP) "Driver Call Log"; this driver call log is used to view a list of driver
calls that have been performed when changes are made to the controls on the soft
front panel.

In this example, open the Soft Front Panel for the M938xA PXle VSG and perform
the following steps:

1. Set the output frequency to 1T GHz.

2. Set the output level to O dBm.

3. Enable the ALC.

4. Enable the RF Output.
AgM938x is the driver name used by the SFP. VsgDriver is the instance of the driver

that is used in this example. This instance would have been created in, "Step 4 -
Create Instances of the IVI COM Drivers".

| AgMP38x VsgDriver = new AgMB38x(); |

Driver Call Log [|
Call History:
AgMS38x.RF.Frequency = 1000000000; A

AgMS38x. Driver.List. WaitUntllComplete(];
AgMazBx.Apply();

AgQMS3Bx.RF.Level = 0;

AgMa38x. Driver.List. WaitUntilComplete();
AgMa38x.Apply():

AgMa38x. Driver,List. WaitUntilComplete();
AgM93Bx.RF.ALC.Enabled = True;
AgM338x.Driver.List. WaitUntiiComplete();
AgM938x.Apply();
AgMS38x.RF.OutputEnabled = True;

AgM3a38x. Driver.List, WaitUntilComplete();
AgMa38x.Apply(); =

\Save As...| |Clear History| | Close |

/1 Set the output frequency to 1 GHz
VsgDri ver. RF. Frequency = 1000000000;
/[l Set the output level to O dBm
VsgDri ver. RF. Level = 0;

/I Enabl es the ALC

VsgDri ver. ALC. Enabl ed = true;

/'l Enabl es the RF Qut put

VsgDri ver. RF. Qut put Enabl ed = true;

Keysight M9393A PXle Performance Vector Signal Analyzer

/1 Waits until the list is finished or the specified
ti nme passes
bool retval = VsgDriver.List.WaitUntil Conplete();

/I &el l'ip;or you could use the follow ng:
[/ Waits 100 nms until output is settled before

produci ng si gnal
bool retval = VsgDriver.RF.WaitUntil Settl ed(100);

Step 7 - Close the Driver

Calling d ose() at the end of the program is required by the IVI specification
when using any VI driver.

Important! G ose() may be the most commonly missed step when using an VI
driver. Failing to do this could mean that system resources are not freed up and
your program may behave unexpectedly on subsequent executions.

{
I f(VsaDriver!= null && VsaDriver.lnitialized)
{
/1 Close the VSA driver
VsaDriver. d ose();
Consol e. WiteLine("VSA Driver C osed\n");
}
i f(VsgDriver !'= null && VsgDriver.Initialized)
{
/[l Close the VSG driver
VsgDriver. d ose();
Consol e. WitelLine("VSG Driver C osed");
}
}

Step 8 - Building and Running a Complete Program Using Visual
C-Sharp

Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2010.
2. Set the appropriate platform target for your project.
- In many cases, the default platform target (Any CPU) is appropriate.

- However, if you are using a 64-bit PC (such as Windows 7) to build a .
NET application that uses a 32-bit IVI-COM driver, you may need to
specify your project's platform target as x86.

Keysight M9393A PXle Performance Vector Signal Analyzer 34

35

3. Choose Project > ProjectNameThatYouUsed Properties and select Build |
Rebuild Solution.

- Tip: You can also do the same thing from the Debug menu by
selecting Start Debugging or pressing the Fb5 key.

Example programs are available from C:\Program Files (x86)\IVI
Foundation\IVA\Drivers\AgM9393\Examples

Before you run the LiveSoftFrontPanel C# example program, ensure that the
associated app.config file has the following content for the .NET Runtime
interoperability:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<startup uselLegacyV2Runti neActivationPolicy="true">
<support edRunti me version="v4.0" sku=".NETFranework,
Ver si on=v4.0" />
<support edRunti me version="v2.0.50727/>
</startup>
</ configuration>

Example Program 1- Code Structure

The following example code builds on the previously presented "Tutorial: Creating a
Project with IVI-COM Using C#" and demonstrates how to instantiate two driver
instances, set the resource names and various initialization values, initialize the two
driver instances, print various driver properties for each driver instance, check
drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting: C:\Program Files (x86)\IVI
Foundation\IV\Drivers\AgM9393\Examples

Keysight M9393A PXle Performance Vector Signal Analyzer

3 +|5|:|En:i—'3-' using Directives |
12
13| [Hnamespace VsaVsgProperties
14 | {
15 [class Program
16 7
17 © static woid Main(string[] args)
18 7
19 !/ Create driver instances
20 IAgM238x MO38ldriver = new AgMO38x();
21 TAgMI393 MI393driver = new AgMI393();
22 try
23 {
24 [¥ [fnitialize Driver Instances|
42 H |F"int Driver P’:pe*tie5|
61
62 [
b6
67 & [check for Errors
86 1
87 catch (Exception ex)
83 7
89 Conscle.Writeline(ex.Message);
96 1
a1 finally
a2 {
93 = [Close Driver Instances
167 1
1&8
1@9 Conscle.WriteLine("Done - Press Enter to Exit");
118 Conscle.Readline();
111 1
112 1
113 |}
115 =/*

Example Program 1- How to Print Driver Properties, Check for Errors, and
Close Driver Sessions

/1 Copy the follow ng exanpl e code and conpile it as a
C# Consol e Application

/| Exanpl e__VsaVsgProperties.cs
#region Specify using Directives
usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Ling;

usi ng System Text;

using lvi.Driver.Interop;

usi ng Agil ent. AgMB38x. | nt er op;
usi ng Agil ent. AgMB393. | nt er op;
#endr egi on

nanespace VsaVsgProperties

Keysight M9393A PXle Performance Vector Signal Analyzer 36

37

cl ass Program

{
static void Main(string[] args)
{
/] Create driver instances
| AgMB38x VsgDriver = new AgWR38x();
| AgMP393 VsaDriver = new AgMB393();
try
{

#region Initialize Driver |nstances

string VsgResourceNane = "PXl 8::0::0::1NSTR
PXlI 11::0::0:: 1 NSTR; PXlI 12:: 0:: 0:: I NSTR; PXI 13:: 0: : O: :
| NSTR';

string VsaResourceNane = "PXl 14::0::0:: | NSTR;
PXl 10::0::0:: I NSTR; PXI 9: : 0:: 0: : | NSTR";

bool IdQuery
bool Reset

= true;
= true;

string VsgOptionString = "QuerylnstrStatus=true,
Si mul at e=f al se, Driver Setup= Mdel =VSG Trace=fal se";

string VsaOptionString = "QuerylnstrStatus=true,
Si mul at e=f al se, Driver Setup= Mddel =VSA, Trace=fal se";

VsgDriver.lnitialize(VsgResourceNane, |dQuery,
Reset, VsgOptionString);
Consol e. WiteLine("VSG Driver Initialized");

VsaDriver.lnitialize(VsaResourceNane, |dQuery,
Reset, VsaQptionString);

Consol e. WiteLine("VSA Driver Initialized\n\n");

#endr egi on

#region Print Driver Properties

/1 Print lviDriverldentity properties for the
PXl e VSG

Console. WiteLine("ldentifier: {0}", VsgDriver.
Identity.ldentifier);

Consol e. Wit eLi ne("Revi si on: {0}", VsgDriver.
| dentity. Revi si on);
Consol e. Wit eLi ne(" Vendor : {0}", VsgDriver.

| dentity. Vendor) ;

Consol e. Wi teLi ne("Description: {0}", VsgDriver.
| dentity. Descri ption);

Consol e. Wit eLi ne(" Mdel : {0}", VsgDriver.
| dentity. | nstrunment Model);

Consol e. Wi teLi ne("Fi rmvareRev: {0}", VsgDriver.
I dentity. | nstrunment Fi r mvar eRevi si on);

Consol e. Wi telLine("Si nul at e: {0}\n",
VsgDri ver. Driver Qperation. Simul ate);

Keysight M9393A PXle Performance Vector Signal Analyzer

/1 Print lviDriverldentity properties for the
PXl e VSA

Consol e. WiteLine("ldentifier: {0}", VsaDriver.
Identity.ldentifier);

Consol e. Wit eLi ne("Revi si on: {0}", VsaDriver.
| dentity. Revi si on);
Consol e. Wit eLi ne(" Vendor : {0}", VsaDriver.

| dentity. Vendor);

Consol e. Wi teLi ne("Description: {0}", VsaDriver.
| dentity. Descri ption);

Consol e. Wit eLi ne(" Model : {0}", VsaDriver.
I dentity. | nstrunment Mdel);

Consol e. Wi teLi ne("FirmvareRev: {0}", VsaDriver.
I dentity. I nstrunentFirmmvar eRevi sion);

Consol e. Wi teLine("Si nul at e: {0}\n",
VsaDriver.DriverQperation. Si mul at e) ;

#endr egi on

#regi on Perform Tasks

/'l TO DO Exercise driver nethods and
properties.

[/ Put your code here to performtasks with
PXl e VSG and PXle VSA

#endr egi on

#regi on Check for Errors

/'l Check VSG instrument for errors
int VsgErrorNum = -1;

string VsgErrorMsg = null;

while (VsgErrorNum!= 0)

{
VsgDriver. Utility. ErrorQuery(ref
VsgError Num ref VsgErrorMsg);
Consol e. WiteLine("VSG ErrorQery: {0}, {1}
\'n", VsgErrorNum VsgErrorMsg);

}

/[l Check VSA instrument for errors
i nt VsaError Num= -1;

string VsaErrorMsg = nul|;

whil e (VsaErrorNum ! = 0)

{
VsaDriver. Utility. ErrorQuery(ref
VsaError Num ref VsaErrorMg);
Consol e. WiteLine("VSA ErrorQery: {0}, {1}
\'n", VsaErrorNum VsaErrorMsg);

}
#endr egi on
}
catch (Exception ex)
{
Consol e. Wit eLi ne(ex. Message) ;
}

Keysight M9393A PXle Performance Vector Signal Analyzer 38

finally
{
I f (VsgDriver !'= null && VsgDriver.Initialized)
{
/1 Close the driver
VsgDri ver. d ose();
Consol e. WiteLine("VSG Driver C osed");
}
I f (VsaDriver !'= null && VsaDriver.Initialized)
{
[/ Close the driver
VsaDriver. d ose();
Consol e. WitelLine("VSA Driver C osed\n");
}
}
Consol e. WitelLine("Done - Press Enter to Exit");
Consol e. ReadLi ne();
}
}
}
Disclaimer

© 2015 Keysight Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample
Application (and/or any modified version) in any way you find useful, provided that
you agree that Keysight Technologies has no warranty, obligations or liability for
any Sample Application Files.

Keysight Technologies provides programming examples for illustration only. This
sample program assumes that you are familiar with the programming language
being demonstrated and the tools used to create and debug procedures. Keysight
Technologies support engineers can help explain the functionality of Keysight
Technologies software components and associated commands, but they will not
modify these samples to provide added functionality or construct procedures to
meet your specific needs.

Keysight M9393A PXle Performance Vector Signal Analyzer

Working with PA FEM Measurements

The RF front end of a product includes all of the components between an antenna
and the baseband device. The purpose of an RF front end is to upconvert a
baseband signal to RF that can be used for transmission by an antenna. An RF front
end can also be used to downconvert an RF signal that can be processed with ADC
circuitry. As an example, the RF signal that is received by a cellular phone is the
input into the front end circuitry and the output is a down-converted analog signal
in the intermediate frequency (IF) range. This down-converted signal is the input to
a baseband device, an ADC. For the transmit side, a DAC generates the signal to be
up-converted, amplified, and sent to the antenna for transmission. Depending on
whether the system is a Wi-Fi, GPS, or cellular radio will require different
characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF
Filters and Switches, and FEMs [Front End Modules].

- RF Power Amplifiers and RF Filters and Switchestypically require the
following:

- PA[Power Amplifier] - Production Tests which include:

- Channel Power - Power Acquisition Mode is used to return
one value back through the API.

- ACPR [Adjacent Channel Power Ratio] - When making fast
ACPR measurements, "Baseband Tuning" is used to digitally
tune the center frequency in order to make channel power
measurements, at multiple offsets, using the Power
Acquisition interface.

- Servo Loop- When measuring a power amplifier, one of the
key measurements is performing a Servo Loop because when
you measure a power amplifier:

- itis typically specified at a specific output power

- there is a need to adjust the source input level until you
measure the exact power level - to do this, you will
continually adjust the source until you achieve the
specified output power then you make all of the ACPR
and harmonic parametric measurements at that level.

- FEMs [Front End Modules] - which could be a combination of multiple front
end functions in a single module or even a "Switch Matrix" that switches
various radios (such as Wi-Fi, GSM, PCS, Bluetooth, etc.) to the antenna.

Test Challenges Faced by Power Amplifier Testing

The following are the test challenges faced by power amplifier testing:
- The need to quickly adjust power level inputs to the device under test (DUT).

- The need to assess modulation performance (i.e., ACPR and EVM) at high
output power levels.

Keysight M9393A PXle Performance Vector Signal Analyzer 40

47

The figure below shows a simplified block diagram for the M9381A PXle VSG and
M9393A PXle VSA in a typical PA / FEM test system.

Typical power amplifier modules require an input power level of O to + 5 dBm,
digitally modulated according to communication standards such as WCDMA or
LTE. The specified performance of the power amplifier or front end module is
normally set at a specific output level of the DUT. If the devices have small
variations in gain, it may be necessary to adjust the power level from the M9381A
PXle VSG to get the correct output level of the DUT. Only after the DUT output
level is set at the correct value can the specified parameters be tested. The time
spent adjusting the M9381A PXle VSG to get the correct DUT output power can be
a major contributor to the test time and the overall cost of test.

The M9381A PXle VSG is connected to the DUT using a cable and switches. The
switching may be used to support testing of multi-band modules or multi-site
testing. The complexity of the switching depends on the number of bands in the
devices and the number of test sites supported by the system. The DUTs are
typically inserted into the test fixture using an automated part handler. In some
cases, several feet of cable is required between the M9381A PXle VSG and the
input of the DUT.

RF In [RF Out

RF In [x RF Out

The combination of the RF cables and the switching network can add several dB of
loss between the output of the M9381A PXle VSG and the input of the DUT, which
requires higher output levels from the M9381A PXle VSG. Since the tests are
performed with a modulated signal, the M9381A PXle VSG must also have
adequate modulation performance at the higher power levels.

Performing a Channel Power Measurement, Using Immediate
Trigger

Standard Sample Channel Filter ~ Channel Filter Channel Filter Channel

Rate Type Parameter Bandwidth Offsets
WCDMA 5 MHz RRC 0.22 3.84 MHz 5, 10 MHz
LTE 10 MHz 11.25 Rectangular N/A 9 MHz 10, 20
FDD MHz MHz

Keysight M9393A PXle Performance Vector Signal Analyzer

Standard Sample Channel Filter ~ Channel Filter Channel Filter Channel
Rate Type Parameter Bandwidth Offsets

LTE 10 MHz 11.25 Rectangular N/A 9 MHz 10, 20

TDD MHz MHz

1XEV-DO 2 MHz RRC 0.22 1.23 MHz 1.25,2.5
MHz

TD-SCDMA 2 MHz RRC 0.22 1.28 MHz 1.6,3.2
MHz

GSM/EDGE 1.25MHz Gaussian 0.3 271 KHz

Channel

GSM 125MHz TBD TBD 30 KHz 400, 600

/EDGEORFS KHz

Example Program 2- Code Structure

The following example code demonstrates how to create a driver instance, set the
resource name and various initialization values, and initialize the two driver

instances:

1. Send RF and Power Acquisition commands to the M9393A PXle VSA driver

and Apply changes to hardware,

2. Check the instrument queue for errors.

3. Perform a Channel Power Measurement,

4. Report errors if any occur, and close the drivers.

Example programs may be found by selecting: C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgM9393\Examples

Keysight M9393A PXle Performance Vector Signal Analyzer 42

43

E1// Copy the following example code and compile it as a C# Console Application
[/ Example_ ChannelPowerImmTrigger_ Alternate.cs
// Channel Power Measurement, Using Immediate Trigger

HEpecify using Di’ectiueﬂ

namespace ChannelPowerImmTrigger

Bl

Ki

Bl class Program
T

El

static woid Main(string[] args)

1

S Create driver instance
IAgMI393 MI393driver = new AgMI393();

try
1

[+ |Initialize Driver Instancﬂ

[# |Check Instrument Queue for Errors

[+ |RECEiUE’ Settingﬂ
B
1

catch (Exception ex)

1

Consocle.WriteLine("Exceptions for the drivers:\n"};
Conscle.Writeline(ex.Message);

¥

finally

[+ klcse Driver Instanceﬂ

Consocle.Writeline("Done - Press Enter to Exit"});
Consocle.Readline();

Example Program 2 - Pseudo-code

Example Program 2 - Pseudo-code
Initialize Driver for VSA, Check for Errors
- Send RF Settings to VSA Driver:
- Frequency
- Level
- Peak to Average Ratio
- Conversion Mode
IF Bandwidth

- Set Acquisition Mode to "Power"

- Send Power Acquisition Setting to VSA Driver:

Keysight M9393A PXle Performance Vector Signal Analyzer

- Sample Rate
- Duration
- Channel Filter

- Apply Method to Send Changes to Hardware
- Wait for Hardware to Settle

- Send Arm Method to VSA

- Send Read Power Method to VSA

Close Driver for VSA

Using FFT Acquisition Mode in Channel Power Measurements
Advantages of using FFT Acquisition Mode in Channel Power Measurements

The FFT Acquisition mode uses a feature in the digitizer DSP to do a high speed
averaged FFT on the fly. The resultant FFT data is processed in fast capture
memory in hardware. Although this FFT process is limited in length, it is very good
for producing very fast channel power measurements. This process differs with the
Spectrum Acquisition mode, which does an FFT in the host controller.

Baseband tuning within the digitizer is another feature of using FFT Acquisition
mode for making channel power measurements. Baseband tuning can be made
digitally inside the digitizer to shift off the center frequency. In addition, while doing
this, the local oscillator in the downconverter doesn't have to move, while you are
doing baseband tuning. Tuning digitally inside the digitizer has the advantage that
it does not require any settling time. This offset frequency matches the offset
frequency on all the other acquisition modes.

Pseudo code

The following pseudo code is a modification of the Example Program 2 - Pseudo-
code. Use this and Example Program 2 - Channel Power Measurement Using
Immediate Trigger as a reference for coding.

Initialize Driver for VSA, Check for Errors
- Send RF Settings to VSA Driver
- Frequency: (range 9 kHz to 27 GHz)
- Level: (range -170 dBm to 24 dBm)
- Peak to Average Ratio: (range 0 dBm to 20 dBm)

- Conversion Mode: (choose between Single High Side, Single Low
Side, Image Protect, or Auto)

- |IF Bandwidth: (choose between 40 MHz and 160 MHz)
- Set Acquisition Mode to "FFT"
- Send FFT Acquisition Setting to VSA Driver
- FFT Length: select 64, 128, 256, or 512. Typically use 256
- Sample Rate:
- Usable bandwidth of FFT is 80% of sample rate

Keysight M9393A PXle Performance Vector Signal Analyzer 44

45

- Bandwidth should be large enough to include all channels to
be measured

- Window Shape: typically use Hann for best results
- Offset Frequency: (range -160 MHz to 160 MHz)
- FFT Averaging Count: (range 1 to 65536)

- Apply Method to Send Changes to Hardware
- Wait for Hardware to Settle

- Send Arm Method to VSA

- Send Read Power Method to VSA

Close Driver for VSA

Example Program 2 - Channel Power Measurement Using Immediate Trigger

[l Copy the follow ng exanple code and conpile it as a
C# Consol e Application
/| Exanpl e__Channel Power | nmedi at eTri gger. cs
#regi on Specify using Directives

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Linq;

usi ng System Text;

using lvi.Driver.Interop;

usi ng Agil ent. AgMB393. | nt er op;
#endr egi on

nanespace Channel Power | nmTri gger

{
cl ass Program
{
static void Miin(string[] args)
{
/[l Create driver instances
VsaDriver = new AgMB393();
try
{

#region Initialize Driver Instances
string VSAResourceNanme = "PXl 14::0::0::
| NSTR; PXI 10: : 0: : O0: : I NSTR; PXI 9:: 0: : O: : | NSTR; PXI 13:: 0: : O: :
| NSTR";

bool | dQuery
bool Reset

= true;
= true;
string VSAOptionString = "QuerylnstrStatus=t
rue, Simulate=false, DriverSetup= Mydel =MB393A,
Trace=f al se";

Keysight M9393A PXle Performance Vector Signal Analyzer

VsaDriver.Initialize(VSAResour ceNane,
| dQuery, Reset, VSAOptionString);

Consol e. WiteLine("VSA Driver Initialized\n"
)

#endr egi on

#regi on Check | nstrument Queue for
Errors
/'l Check VSA instrunent for errors
i nt VsaErrorNum = -1;
string VsaErrorMsg = nul | ;
while (VsaErrorNum!= 0)

{
VsaDriver. Utility.ErrorQuery(ref
VsaError Num ref VsaErrorMsg);
Consol e. Wi teLine("VSA ErrorQery: {0},
{1}\n", VsaErrorNum VsaErrorMsg);
}

#endr egi on

#regi on Recei ver Settings
/'l Receiver Settings
doubl e Frequency = 2000000000. 0;
doubl e Level = 5;
doubl e RnmsVal ue = 5;
doubl e Channel Ti me = 0. 0001;
doubl e MeasureBW = 5000000. 0;
AgMP393Channel Fi | t er ShapeEnum Fi |l t er Type =
AgMB393Channel Fi | t er ShapeEnum
AgMWB393Channel Fi | t er ShapeRoot Rai sedCosi ne;
doubl e FilterAl pha = 0. 22;
doubl e FilterBw = 3840000. O;
doubl e Measur edPower = 0;
bool Overload = true;
#endr egi on

#regi on Run Comands
/[l Setup the RF Path in the Receiver
VsaDri ver. RF. Frequency = Frequency;
VsaDri ver. RF. Power = Level;
VsaDriver. RF. Conversion =
AgwB393Conver si onEnum AgMR393Conver si onAut o;
VsaDri ver. RF. PeakToAver age = RnsVal ue;
VsaDri ver. RF. | FBandwi dt h = 40000000. 0; //
Use IF filter wide enough for all adjacent channels
// Configure the Acquisition
VsaDri ver. Acqui siti onMode =
AgMB393Acqui si ti onModeEnum AgMB393Acqui si ti onMbdePower ;
VsaDri ver. Power Acqui si tion. Bandwi dth =
MeasureBW // 5 MHz
VsaDri ver. Power Acqui sition.Duration =
Channel Tinme; // 100 us

Keysight M9393A PXle Performance Vector Signal Analyzer 46

47

VsaDri ver. Power Acqui sition. Channel Filter.
Configure(FilterType, FilterAl pha, FilterBw);

/1l Send Changes to hardware

VsaDriver. Appl y();

VsaDriver.WaitUntil Settl ed(100);

string response = "y";
whil e (string. Conpare(response, "y") == 0) {
Consol e. WitelLine("Press Enter to Run
Test");
Consol e. ReadLi ne() ;

VsaDriver. Arn();

VsaDri ver. Power Acqui si ti on. ReadPower (0,
AgMB393Power Uni t sEnum AgMP393Power Uni t sdBm r ef
Measur edPower, ref Overl oad);

Consol e. WitelLine("Measured Power: " +
Measur edPower + " dBmi');

Consol e. WiteLine(String. Format (" Overl oa
d = {0}", Overload ? "true" : "false"));

Consol e. WitelLine("Repeat? y/n");

response = Consol e. ReadLi ne();

}
#endr egi on
}
catch (Exception ex)
{
Consol e. WiteLine("Exceptions for the drivers:
\n");
Consol e. Wi telLi ne(ex. Message) ;
}
finally
#regi on Close Driver |nstances
{
I f (VsaDriver !'= null && VsaDriver.Initialized)
{
[/ Close the driver
VsaDriver. d ose();
Consol e. WiteLine("VSA Driver O osed\n");
}
}
#endr egi on
Consol e. WitelLine("Done - Press Enter to Exit");
Consol e. ReadLi ne();
}
}
}

Keysight M9393A PXle Performance Vector Signal Analyzer

Disclaimer

© 2015 Keysight Technologies Inc. All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample
Application (and/or any modified version) in any way you find useful, provided that
you agree that Keysight Technologies has no warranty, obligations or liability for
any Sample Application Files.

Keysight Technologies provides programming examples for illustration only. This
sample program assumes that you are familiar with the programming language
being demonstrated and the tools used to create and debug procedures. Keysight
Technologies support engineers can help explain the functionality of Keysight
Technologies software components and associated commands, but they will not
modify these samples to provide added functionality or construct procedures to
meet your specific needs.

Performing a WCDMA Power Servo and ACPR Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is performed
using "Baseband Tuning" to adjust the source amplitude and then "Baseband
Tuning" is used to digitally tune the center frequency in order to make channel
power measurements, at multiple offsets, using the Power Acquisition interface of
the M9393A PXle VSA.

The M9393A PXle VSA and the M9381A PXle VSG offers two modes for
adjusting frequency and amplitude:

= RF Tuning - allows the M9381A PXle VSG to be set across the
complete operating frequency and amplitude range

- Baseband Tuning - allows the frequency and amplitude to be
adjusted within the IF bandwidth (160 MHz) and over a range of
the output level.

Example Program 3 - Code Structure

The following example code demonstrates how to instantiate two driver instances,
set the resource names and various initialization values, and initialize the two driver
instances:

1. Send RF and Modulation commands to the M9381A PXle VSG driver and
Apply changes to hardware.

2. Send RF and Power Acquisition commands to the M9393A PXle VSA driver
and Apply changes to hardware.

3. Run a Servo Loop until it is at the required output power from DUT.

4. Perform an ACPR Measurement for each Adjacent Channel to be measured.

Keysight M9393A PXle Performance Vector Signal Analyzer 48

49

5. Check drivers for errors and report the errors if any occur, and close the
drivers.

Example programs may be found by selecting: C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgM9393\Examples

=/ Copy the following example code and compile it as a C# Console Application
// Example PaServohcpr Alternate.cs
// WCDMA Power Servo and ACPR Measurement

E[specify using Directives |

Elnamespace PaservoAcpr

K

= class Program

L
=

[+

[+

[+

£3

[+

static veodd Main(string[] args)
1
ff Create driver instances
IAgMO38x MI38ldriver = new AgM938x();
IAgM2393 MI393driver = new AgMI393();
try
{

[fnitialize Driver Instances|

kheck Instrument Queue for E”c’ﬂ

[create Default Settings for WCDMA Uplink Signal

h

catch (Exception ex)

i
Conscle.WriteLine("Exceptions for the drivers:\n"};
Conscle.Writeline(ex.Message);

¥

finally

[close Driver Instances]

Conscle.Writeline("Done - Press Enter to Exit");
Conscle.ReadLine();

Example Program 3 - Pseudo-code
Initialize Drivers for VSG and VSA, Check for Errors
- Send RF Settings to VSG Driver:

- Frequency

- RF Level to Maximum Needed

RF Enable On

ALC Enable Off (for baseband power changes)

Keysight M9393A PXle Performance Vector Signal Analyzer

- Send Modulation Commands to VSG Driver:
- Load WCDMA Signal Studio File
- Enable Modulation
- Play ARB File
- Set ARB Scale to 0.5
- Set Baseband Power Offset to -10 dB
- Apply Method to Send Changes to Hardware
- Wait for Hardware to Settle
- Send RF Settings to VSA Driver:
- Frequency
- Level
- Peak to Average Ratio
- Conversion Mode
IF Bandwidth

- Set Acquisition Mode to "Power"
- Send Power Acquisition Setting to VSA Driver:
- Sample Rate
- Duration
= Channel Filter
- Apply Method to Send Changes to Hardware
- Wait for Hardware to Settle
Servo Loop:
- Set Baseband Power Offset on VSG to expected value
- Send Apply Method to VSG
- Send Arm Method to VSA
- Send ReadPower Method to VSA
- Repeat Until at Required Output Power from DUT
- Last Reading is Channel Power Measurement
ACPR Measurement:

- Set Acquisition Duration Property on VSA to Value for Adjacent Channel

Measurements
- Set Frequency Offset Property on VSA to Channel Offset Frequency
- Send Apply Method to VSA
- Send Arm Method to VSA
- Send ReadPower Method to VSA

Keysight M9393A PXle Performance Vector Signal Analyzer

50

57

- Repeat for each Adjacent Channel to be Measured

Keysight M9393A PXle Performance Vector Signal Analyzer

Example Program 3 - WCDMA Power Servo and ACPR Measurement

[l Copy the follow ng exanple code and conpile it as a
C# Consol e Application
/| Exanpl e__ PaServoAcpr.cs
/1 WCDVA Power Servo and ACPR Measur ement
#regi on Specify using Directives

usi ng System

usi ng System Col | ecti ons. Ceneri c;

usi ng System Li nq;

usi ng System Text;

using lvi.Driver.I|nterop;

usi ng Agi | ent. AgM38x. | nt er op;

usi ng Agi |l ent. AgMB393. | nt er op;
#endr egi on

nanespace PaSer voAcpr

{

cl ass Program
{
static void Miin(string[] args)
{
/'l Create driver instances
| AgMB38x VsgDriver = new AgMB38x();
| AQMB393 VsaDriver = new AgMP393();
try
{

#region Initialize Driver |Instances
string VsgResourceNanme = "PXI 8::0::0::1NSTR;
PXI 11::0::0::1INSTR;, PXI 12::0:: 0: : I NSTR; PXI 13::0::0: :
| NSTR" ;
string VsaResourceNane = "PXl 14::0::0::
| NSTR; PXI 10: : 0: : O0: : I NSTR; PXI 9:: 0: : O: : | NSTR" ;

bool | dQuery
bool Reset

= true;
= true;
string VsgOptionString = "QuerylnstrStatus=t
rue, Simulate=false, DriverSetup= Mdel =VSG
Trace=f al se";

string VsaOptionString = "QuerylnstrStatus=t
rue, Simulate=false, DriverSetup= Mdel =VSA,
Tr ace=f al se";

VsaDriver.Initialize(VsaResourceNane,
| dQuery, Reset, VsaOptionString);

Consol e. WiteLine("VSA Driver Initialized\n"
);

Keysight M9393A PXle Performance Vector Signal Analyzer 52

53

VsgDriver.Initialize(VsgResourceNang,
| dQuery, Reset, VsgOptionString);
Consol e. WiteLine("VSG Driver Initialized");

#endr egi on

#regi on Check Instrunent Queue for Errors
/1l Check VSG instrunent for errors
int VsgErrorNum = -1;
string VsgErrorMsg = null;
while (VsgErrorNum!= 0)

{
VsgDriver. Utility. ErrorQuery(ref
VsgError Num ref VsgErrorMsg);
Consol e. WiteLine("VSG ErrorQuery: {0},
{1}", VsgErrorNum VsgErrorMsQ);

}

// Check VSA instrunent for errors
i nt VsaErrorNum = -1;

string VsaErrorMsg = nul | ;

while (VsaErrorNum!= 0)

{
VsaDriver. Utility.ErrorQuery(ref
VsaError Num ref VsaErrorMsg);
Consol e. Wi teLine("VSA ErrorQery: {0},
{1}\n", VsaErrorNum VsaErrorMsg);
}

#endr egi on

#region Create Default Settings for WCDVA

Upl i nk Si gnal

/'l Source Settings

doubl e Freguency = 1000000000. 0;

doubl e Level = 3;

/1 1f a Signal Studio waveformfile is
used, it may require a software |icense.

string Exanpl esFol der = "C. Program Fi |l es
(x86) Agi | ent M@38xExanpl e Waveforns";

string Wavefornfile = "WCDVA UL _DPCHH 2DPDCH
_1C wint;

string FileName = Exanpl esFol der +
VWavef or nFi | e;

string ArbRef = "Md Wavef orni;

/'l Receiver Settings
doubl e Channel Time = 0. 0001;
doubl e Adj acent Ti me = 0. 0005;

doubl e | f Bandwi dt h = 40000000. O;
doubl e Power Of f set = O;
doubl e Measur eBW = 5000000. O;

Keysight M9393A PXle Performance Vector Signal Analyzer

AgMB393Channel Fi | t er ShapeEnum Fi | t er Type =
AgMB393Channel Fi | t er ShapeEnum
AgMB393Channel Fi | t er ShapeRoot Rai sedCosi ne;

doubl e FilterAl pha = 0.22;

doubl e FilterBw = 3840000. 0;

doubl e[] FreqOffset = new doubl e[] {-5000000
.0, 5000000.0, -10000000.0, 10000000.0};

doubl e Measur edPower = O;
bool Overload = true;
doubl e Measur edChannel Power ;
bool Channel Power Over| oad;
doubl e[] Measur edACPR = new doubl e[4] ;
doubl e Sanpl eRate = O;
doubl e RmsVal ue = 0;
doubl e Scal eFactor = 0;
#endr egi on

#regi on Run Comands

/|l These conmands are sent to the VSG
Driver, "Apply" or "PlayArb" methods send to hardware

VsgDri ver. RF. Fr equency = Frequency;

VsgDri ver. RF. Level = Level;

VsgDri ver. RF. Qut put Enabl ed = true;

VsgDriver. ALC. Enabl ed = fal se;

VsgDri ver. Modul ati on. | Q Upl oadAr bAgi l entFil e
(ArbRef, Fil eNane);

VsgDri ver. Modul ati on. Enabl ed = true;

VsgDri ver. Modul at i on. BasebandPower = -10;

/[l Play the ARB, sending all changes to
har dwar e

VsgDri ver. Modul ati on. Pl ayAr b(Ar bRef,
AgMB38xSt art Event Enum AgMB38x St art Event | nmedi at e) ;

VsgDri ver. Modul ati on. Scal e = 0. 5;

VsgDriver. Appl y();

I/ Cet the Sanple Rate and RVS Val ue (Peak
to Average Ratio) of the Current Waveform

AgWR38xMar ker Enum Rf Bl ankMar ker
AgMB38xMar ker Enum AgMB38xMar ker None;

AgWB38xMar ker Enum Al cHol dMvar ker
AgMB38xMar ker Enum AgiB38x Mar ker None;

VsgDri ver. Modul ati on. 1 Q Arbl nf or mati on
(ArbRef, ref Sanpl eRate, ref RmsVal ue, ref Scal eFactor,
ref RfBlI ankMarker, ref Al cHol dMarker);

// Setup the RF Path in the Receiver
VsaDri ver. RF. Frequency = Frequency;
VsaDri ver. RF. Power = Level + Power Offset;
VsaDri ver. RF. Conver si on =

AgMB393Conver si onEnum AgvB393Conver si onAut o;
VsaDri ver. RF. PeakToAver age = RnsVal ue;
VsaDri ver. RF. | FBandwi dt h = | f Bandwi dt h;

Keysight M9393A PXle Performance Vector Signal Analyzer 54

55

/1 Configure the Acquisition
VsaDri ver. Acqui siti onMode =
AgMB393Acqui si ti onModeEnum AgMB393Acqui si ti onMbdePower ;
VsaDri ver. Power Acqui si tion. Bandwi dth =
Measur eBW
VsaDri ver. Power Acqui sition. Duration =
Channel Ti ne;
VsaDri ver. Power Acqui si ti on. Channel Filter.
Configure(FilterType, FilterAl pha, FilterBw);
/'l Send Changes to hardware
VsabDriver. Appl y();
VsaDriver.WaitUntil Settl ed(100);
string response = "y";
whil e (string. Conpare(response, "y") == 0) {
Consol e. WiteLine("Press Enter to Run
Test");
Consol e. ReadLi ne();

/1 Run a group of baseband power
commands to change the source | evel and nake a power
measur ement at each step.

/1 Simulates Servo |oop tim ng, but
does not use the neasured power to adjust the next
source | evel

VsaDri ver. Power Acqui sition. Duration =
Channel Ti ne;

VsaDri ver. Appl y();

doubl e[] Level O fset = new doubl e[] {-3,
-2, -1, -0.5, -0.75};

for (int Index = 0;lndex < Level Ofset.
Length - 1;Index++) {

VsgDri ver. Modul ati on. BasebandPower
= Level O fset[| ndex];

VsgDriver. Appl y();

VsaDriver. Arm();

VsaDri ver. Power Acqui si ti on. ReadPower
(0, AgMWB393Power Uni t sEnum AgMP393Power Uni t sdBm r ef
Measur edPower, ref Overl oad);

}

/1l Loop Through the channel offset
frequencies for an ACPR neasur enent

[/l Use the |last value of the servo | oop
for the channel power

Measur edChannel Power = Measur edPower ;

Channel Power Over | oad = Overl oad;

VsaDri ver. Power Acqui sition.Duration =
Adj acent Ti e;

for (int Index = 0;lndex < FreqOfset.
Lengt h; I ndex++) {

VsaDri ver. Power Acqui sition.

O f set Frequency = FreqO fset[I ndex];

Keysight M9393A PXle Performance Vector Signal Analyzer

VsaDri ver. Appl y();

VsaDriver. Arn();

VsaDri ver. Power Acqui si ti on. ReadPower
(0, AgMWB393Power Uni t sEnum AgMB393Power Uni t sdBm ref
Measur edPower, ref Overl oad);

Measur edACPR] | ndex] = Measur edPower
- Measur edChannel Power ;

}

/'l Make sure the VSA frequency offset
is back to O (on repeat)

VsaDri ver. Power Acqui si ti on.
O f set Frequency = 0;

VsabDriver. Appl y();

i f (Channel Power Overl oad == true) {

Consol e. Wit eLi ne(" Channel Power

Measur ement Overl oad");

}

Consol e. Wi teLine("Channel Power: {0}
dBm', Measur edChannel Power) ;

Consol e. WitelLine("ACPRL L: {0} dBc",
Measur edACPR 0]) ;

Consol e. WitelLine("ACPRL U. {0} dBc",
Measur edACPR 1]) ;

Console. WiteLine("ACPR2 L: {0} dBc",
Measur edACPR] 2]) ;

Consol e. WitelLine("ACPR2 U. {0} dBc",
Measur edACPR[3]) ;

Consol e. WiteLine("Repeat? y/n");
response = Consol e. ReadLi ne();

}
#endr egi on
}
catch (Exception ex)
{
Consol e. WitelLine("Exceptions for the drivers:
\n");
Consol e. Wi telLi ne(ex. Message) ;
}
finally
#regi on Close Driver |nstances
{
I f (VsgDriver !'= null && VsgDriver.Initialized)
{
[/ Close the driver
VsgDriver. C ose();
Consol e. WitelLine("VSG Driver C osed");
}
if (VsaDriver != null && VsaDriver.lInitialized)
{

Keysight M9393A PXle Performance Vector Signal Analyzer 56

57

/1 C ose the driver
VsaDri ver. d ose();
Consol e. WiteLine("VSA Driver Cosed\n");

}
#endr egi on

Consol e. WitelLine("Done - Press Enter to Exit");
Consol e. ReadLi ne();

Making Harmonic Measurements with the M9393A VSA

Making harmonics and spurious measurements is a key application of the M9393A
Vector Signal Analyzer (VSA).

Spectrum Acquisition mode

Harmonic measurements are made in the Spectrum Acquisition mode, which
allows:

- Setting specific Span and Resolution Bandwidth (RBW)
- Averaging to "Time Peak" for peak detection
= Noise Correction
- Digital image rejection
Considerations when making a harmonics measurement

- Span and RBW: use specified values. Modulated signals measurements will
vary a large amount based on the value of the RBW.

- Widow Type: typically use HDR Flat Top.

- Averages: Set time required to achieve desired repeatability. Time for each
average is FFT Size / Sample Rate.

= Overlap: Typically use 0.5.

- Results: Array of power data in units of dBm. Start Frequency and Frequency
Delta between points in the array.

Programming considerations

The following M9393A software drivers are used in constructing a program to make
a harmonics measurement:

IAgM9393
Apply
Arm
Initialize
RF

Keysight M9393A PXle Performance Vector Signal Analyzer

- Configure
- Conversion
- Frequency
- IFBandwidth
- Power
AcquisitionTrigger
- Delay
- Mode
- Timeout
- TimeoutMode
ExternalTrigger
- Slope
- Source
AcquisitionMode
SpectrumAcquisition
- Averaging
- Configure
- Count
= Duration
- Mode
- Overlap
- GetComplexSpectrum
- ResolutionBandwidth

- Span

Using the M9393A with the Resource Manager (M9000) and
Modular X-Apps (M90XA)

Resource Manager

The Resource Manager is a program that enables common hardware to be
accessed by switching between multiple programs. The image below shows
common hardware (in green) being accessed directly by drivers or two programs.
The Resource Manager (in yellow) in this example allows rapid switching between
the 89600 VSA program and the X-Series Apps program. By being able to switch
between different programs and by direct VI driver access, test developers can
gain insights and then optimize their test algorithms.

Keysight M9393A PXle Performance Vector Signal Analyzer 58

59

Customer test code

1) Direct driver Driver IV schl I I ScPl

access for fast access NET
data

2) Via application
software layers

resource
manager VI& VIsA | PXI VSA “Instrument” Library

+ Quickly switch
between
applications with

driver

Agilent /O Libraries (AGVisa32.dll)
L | .

@8 6.0
Hardware - Agilent Agilent Agilent Agilent

M9214A M9308A M9365A MO9300A
Fomitan | Srabtaee | e ekeranee

Modular X-Series Apps
Features of the X-Series Apps are:
- Consistent interface

= Common algorithms, programming commands and shared library of
measurement applications across X-Series signal analyzers and M9393A PXI
VSA ensure consistent, repeatable results.

- Same look and feel as bench-top analyzer applications
- Same measurement algorithms

- Same SCPI interface

= One license supports up to four PXI VSAs

There are presently X-Series Apps for cellular communications, wireless
connectivity, and general purpose apps.

The cellular communications X-Apps include the EVM measurement, which is
useful for testing power amplifiers.

Keysight M9393A PXle Performance Vector Signal Analyzer

M9393A List Mode

Use the "List" Mode to record a set of VI commands that can be quickly executed
on the M9393A hardware. In the List Mode, IVI commands are recorded as a binary
stream and are played back using the FPGA component of the M9214A PXle
Digitizer. Thus, the execution speed for such a binary stream is much faster than if
the commands were to be executed sequentially by the host controller.

List Mode is useful in automated manufacturing situations where making high
speed signal acquisitions with accurate timing is important to reduce test times for
a device under test (DUT). By reducing the test times, increased production
throughput is achieved.

List Mode Set Up

Using IVI methods and properties, you can create and play one or more named List
that can be cataloged in the M9393A driver. A List executes a predefined set of
Acquisitions, each of which starts with the specified Acquisition Mode and with the
specific configurations, such as sample rate, offset, and frequency. There are
several different Acquisition Triggers. Besides all the triggers available in the non-
list mode, there is another acquisition trigger mode called Scheduler. The
Scheduler makes it possible to make a series of acquisitions with accurate timing
using the internal timer. The List can also generate outgoing triggers. Using proper
acquisition triggers and outgoing triggers, the List can interact with DUT and other
external equipment as well as control the timing of acquisitions autonomously with
the internal timer. This enables you to perform complicated test sequences.

Perform the following steps:

1. Define a named List with Li st . Cr eat e and Li st. End.

2. In between Li st . Creat e and Li st . End, define one or more entries or
Steps with Li st. Entry. Add andLi st. Entry. End.

3. In each Entry, use the Acqui si ti onMbde attribute to specify what kind of
acquisition is to be made, just as you do outside the List. In the List, these
three modes are allowed: [QAcquisition, SpectrumAcquisition, and
PowerAcquisition.

4. CallLi st. Acqui si tion. Add to define an acquisition. This method must
be called only once for an entry because each entry has to define one and
only one acquisition.

5. Add other methods and properties to configure an entry, as required.

Properties undefined in an "Entry" will hold the same values as those
from the preceding Entry, or from the start of the list definition if they
are not defined in any of the preceding Entries.

6. To specify how the List advances from one entry to the other, use
Acqui sition Trigger.
Once an acquisition is finished in an entry, the List makes any changes

Keysight M9393A PXle Performance Vector Signal Analyzer 60

needed for the next acquisition in the next entry and gets to the armed state
as soon as possible. You can still put Appl y and Ar min the List definition,
but these will be simply ignored.

7. Typically, a List contains more than one acquisition. Each acquisition is
identified by a unique key or Capture ID. You need to remember or make
note of the Capture ID returned by Li st . Acqui si ti on. Add, or use the
utility method Li st . Acqui si tion. Get Capturel D(string
Li st Nane, string EntryNane).When you need to read the data, you
must pass in the correct Capture ID to the Read methods.

8. Memory must be allocated for all the acquisitions before playback. The
M9393A driver performs this task automatically so that you are not required
to do anything. However, in some cases, you might be required to explicitly
control the timing of the memory allocation, for example, when the memory
allocation process takes a long time (more than a second) for a long list. Use
the Li st. Acqui si tion. Al l ocat eMenory method for memory
allocation in such a scenario. For details, see the M9393A VI Documentation.
Also, after the acquisition, the driver does not automatically release the
memory. Use the Li st. Acqui si ti on. Rel easeMenory method to
manually release the memory, in case required. However, it is not
recommended to release and re-allocate memory for each playback of a list,
but rather to keep and reuse the same allocation for multiple playbacks of
the same list. By default, the same memory allocation is used for subsequent
playbacks, which also means that the data related to a playback gets
overwritten when subsequent playback starts. Thus, you must ensure that
you retrieve the required data related to acquisitions before starting the next
playback.

9. Once List playback starts, acquisitions are completed one by one from the
beginning of the List. You can retrieve the data from the completed
acquisitions regardless of whether the entire list has been completely
executed or not.

Li st. Wi t For Dat a takes Capture ID and returns if the corresponding
acquisition has been completed or not. Following this call, you can call the
corresponding read methods even while the list is still playing.

See the M9393A VI Documentation for the complete list of IVI commands.

The following sample code shows how to define a list, then to play it, and then
finally to retrieve acquisition data:

const int SAMPLE COUNT = 1000000;
/*************************** DEFI NE A LI ST

*********************************/
const string LIST_NAME = "My List";
driver.List.Create(LlI ST _NAME);

// Do IQacuisition in Step 1
const string STEP_1 = "Step 1";

Keysight M9393A PXle Performance Vector Signal Analyzer

driver.List.Entry. Add(STEP_1);
driver.List.Acquisition.Add(0);

driver. Acqui siti onMbde = AgMB393Acqui siti onModeEnum
AgMB393Acqui si ti onvodel Q
driver.| QAcqui sition. Sanpl eRat e
driver. | QAcquisition.Sanpl eSi ze
AgMWB393Sanpl eSi ze64Bi t s;

driver. | QAcquisition. Sanpl es = SAVMPLE_ COUNT;
driver.List.Entry. End();

5e7,;
AgMB393Sanpl eSi zeEnum

/[l Do Power acuisition in Step 2

const string STEP_2 = "Step 2";

driver. List.Entry. Add(STEP_2);

driver. List. Acquisition. Add(0);

driver. Acqui sitionMbde = AgMB393Acqui siti onMbdeEnum
AgMB393Acqui si ti onMbdePower ;

driver. Power Acqui sition.Duration = le-4;
driver.List.Entry. End();

driver. List.End();

/*************************** PLAY A LI ST
**********************************/
driver.List.Play(LI ST_NAME, 10000,
AgMB393Li st St art Event Enum

AgMB393Li st St art Event | nmredi at e) ;

/*************************** RETRI EVE DATA

********************************/

/Il CGet IDfor the IQ acquisition
int idForl Q = driver.List.Acquisition.GetCapturel D
(LI ST_NAME, STEP_1);

[/ Wait until the data becones ready.

while (driver.List.WitForData(idForlQ 100) ==
AgMB393Li st Dat aDi sposi ti onEnum

AgMB393Li st Dat aDi spositi onWaiting) {}

/[l Retrieve |Q data
doubl e[] iq = new doubl e[SAMPLE_COUNT * 2];
bool overload = fal se;
driver.| QAcqui sition. Readl QDat a(i dForl Q
AgMB391I1 QUni t SEnum
AgMB3911 QUni t sSquareRootM | | i Watts,
0,

SAMPLE_COUNT,
ref iq,
ref overl oad);

[l Get ID for Power acquisition

Keysight M9393A PXle Performance Vector Signal Analyzer 62

i nt i dFor Power = driver.List.Acquisition.GetCapturelD
(LI ST_NAME, STEP_2);

/1 Wait until the data becones ready.

whil e (driver. List.WitForData(idForPower, 100) ==
AgMB393Li st Dat aDi sposi ti onEnum

AgMB393Li st Dat abi spositionVaiting) { }

/'l Retrieve Power
doubl e power = 0.0;
driver. Power Acqui si ti on. ReadPower (i dFor Power ,
AgMB391Power Uni t SEnum
AgMB393Power Uni t sdBm
ref power,
ref overl oad);

The M9393A VI Documentation provides information about the IVI commands
for defining Lists, performing acquisitions, playing back Lists, and scheduling
acquisitions.

Limitations in List Mode

- Since the list is recorded with alignments valid for specific temperature and
environment, temperature fluctuations can invalidate the contents of the list
because calibration coefficients that are a function of temperature would be
incorrect. Thus, it is recommended to re-record the list by calling Li st .
Updat eCorr ect i ons if the temperature changes more than 5 degrees
Celsius or if 24 hours have elapsed since the last recording.

This also means that the List cannot be shared across sessions, or between
hardware sets without re-recording.

= When configuring List mode in a hardware configuration involving M9169E
Programmable Attenuator, the following IVI properties cannot be recorded
and played back:

- RF. Power
- RF. M xer Level O f set

- RF. | nput Enabl ed
An error is reported when a list entry that includes any of these
properties is closed.

For more information about extended frequency range, refer to Extending the RF
Frequency Range.

63 Keysight M9393A PXle Performance Vector Signal Analyzer

M9393A Programming Advanced Topics - Hints only

This section provides quick tips for performing the following functions:
- Extending the RF Frequency Range
- Attaining Wideband IF and Using a Wideband Digitizer
- Performing Data Streaming Using an External Wideband Digitizer 1
- Understanding API for Peer-to-Peer Support

Extending the RF Frequency Range (3.6 GHz to 50 GHz)

To extend the frequency range to 50 GHz (when option M9365A-FRX is installed), it
is recommended to use the M9T169E Programmable Attenuator module to provide
range control and automated field alignments and self-test. The RF signal is
applied to the Aux 2 In connector on the M9365A Downconverter directly or
through the M9169E Programmable Attenuator. For the prerequisites and setup
information for these configurations, refer to the M9393A Startup Guide.

When writing programs for extended frequency range, use the following option
stringinthelnitialize() method:

Driver Set up= Aux2l n=true

This option string is used when the input signal is directly applied to the Aux 2 In
connector. When using M9169E to apply the adjusted input to the Aux 2 In
connector, do not specify the above option string. The resource description in the
Initialize() method that contains information about the M9169E module
automatically takes into consideration the use of Aux 2 In connector.

The MI9393A SFP Guide explains the settings required to extend the frequency
range using the M9393A Soft Front Panel.

For the List Mode limitations when operating in extended frequency range,
refer to M9393A List Mode.

Attaining Higher IF Bandwidths Using a Wideband Digitizer

To achieve wideband IF, the IF Conditioning/Filtering path in the M9365A
Downconverter module is bypassed and an external digitizer, such as M9202A or
M9703A is used to sample the signal with wider IF bandwidth. The M9393A-WB'1
option must be installed to achieve this functionality. For more information on
setup and cabling, refer to the M9393A Startup Guide.

When writing programs for the above configuration, use the following option string
inthel nitialize() method:

DriverSetup= External Digitizer=true
The RF2 interface includes the following two additional properties:

- IFFilterBypassEnabled: Set this property to true to bypass IF filters in the IF
signal path of the M9365A Downconverter module. This allows a wide IF
bandwidth. By default, this property is set to false. However, when the

Keysight M9393A PXle Performance Vector Signal Analyzer 64

65

option ExternalDigitizer is set to true in the I ni ti al i ze method this
property acquires a value of true.

RF Frequency must be greater than 3.6 GHz to enable IF Filter Bypass. On a
50 GHz configuration enabled by option M9365A-FRX, RF Frequency must
be greater than or equal to 3.6 GHz. Double downconversion Image Protect
conversion type, which is not available above 3.6 GHz, cannot be set when
IF Filter Bypass is enabled.

- IFFilterBypassFrequency: The center frequency in Hz of the downconverter's
IF output when IF filter bypass is enabled. This property can be set when the
option ExternalDigitizer is set to true in the I ni ti al i ze method and the
| FFi | t er BypassEnabl ed property is set to true. The valid range is 300
MHz to 600 MHz. The default value is 500 MHz

Performing Data Streaming With an External Wideband Digitizer

Data streaming depends on wideband digitizer functionality being enabled in the
M9393A. When using M9202A Digitizer, for instance, all the programmatic control
for data streaming is done using the M9392A VI interfaces once the M9393A is set
up. M9393A VI interfaces do not implement data streaming in any way.

Understanding API for Peer-to-Peer Support

Peer-to-peer streaming enables M9393A to produce and transfer finite-length 1Q
data directly from the M9214A Digitizer to another module that supports peer-to-
peer data transfer, such as the M3451A module, without involving the host
controller.

Currently, the M9214A Digitizer does not support peer-to-peer transfer of
continuous gap-free data streams.

The peer-to-peer streaming is achieved using the PeerToPeerPort interface of the
M9393A IVI driver. Currently, M9393A supports a single port; however, in the
future, additional ports could be supported. For more information about this
interface, refer to the M9393A VI documentation.

The peer-to-peer feature is demonstrated in the Keysight RF PA/FEM
Characterization & Test, Reference Solution that uses PXle M9393A VSA and PXle
M9381A VSG measurement hardware, along with the M3451A FPGA measurement
accelerator module to perform DPD computations. In this Reference Solution, the
peer-to-peer capability is utilized to perform the following two data transfers:

1. M9393A VSA to M9451 FPGA

2. M9451A FPGA to M9381A VSG

Using the peer-to-peer capability, the host controller is not used and hence, the
data transfer becomes faster.

Keysight M9393A PXle Performance Vector Signal Analyzer

Differences between the M9391 and M9393

The major differences between the M9391 and M9393 are as follows:
- M9393 supports noise correction, M9391 does not.
- M9393 supports digital image rejection, M3391 does not.

- M39391 has a dual-downconversion path across most of the band, M9393
only has this in the narrowband.

- M9393 has a Stepped Spectrum IVI interface, M9391 does not.

- M39393 has a MultiAcquisition mode in addition to the List mode, M3391
does not.

- M9393 has two IF filter bandwidths, where M9391 has only one.

- M9393 has three different offset adjustments: IF, digitizer, and mixer,
whereas M9391 only has two.

- The interface for alignments is slightly different: there are more options with
M9393. Additionally, the alignments are stored in EEPROM, alignments
therefore don't need to be re-run in between VI sessions.

- M9393 has a Live SFP, M9391 does not.

- M9393 requires that the RF input have no incident signal when performing
alignments, M9391 does not.

- M9393 has a broadband trigger in addition to the other triggers present for
the M9391.

Keysight M9393A PXle Performance Vector Signal Analyzer 66

Appendix - Verify Instruments Connect Pass Self-Test are Updated

Before you attempt to programmatically control any hardware and make
measurements, connect to each of the instrument soft front panels, one at a time,
perform self-test, and verify their FPGA firmware is fully updated. If any firmware
updates are made, perform the self-test again.

In the following procedures, each instrument connection must be verified, each
instrument must pass self-test, and each instrument's firmware version should be
checked and updated if needed.

Verify that VSG 1 is Connected, Passes Self-Test, and Contains
up to Date Firmware

1. Select Start > All Programs > Keysight > M938x > M9381 SFP and run the soft
front panel of the M9381A PXle VSG - connect to VSG #1 and the M9300A PXle
Reference.

2. Run self-test.

3. Check firmware and update if necessary.

4. Close the Firmware Update dialog box if no firmware updates are necessary.If
firmware updates are required, install the updates, shut down the computer, cycle
power on the M9018A PXle Chassis, and repeat this procedure to verify connection,
self-test, and no further firmware updates are necessary.

Verify that VSA 1 is Connected, Passes Self-Test, and Contains
up to Date Firmware

1. Select Start > All Programs > Keysight> M9393 > M9393 SFP and run the
soft front panel of the M9393A PXle VSA - connect to VSA #1 and the
M9300A.

2. Run self-test.
3. Check firmware and update if necessary.

4. Close the Firmware Update dialog box if no firmware updates are necessary.
If required, install the updates, shut down the computer, cycle power on the
M9I018A PXle Chassis, and repeat this procedure to verify connection, self-
test, and no further firmware updates are necessary.

Keysight M9393A PXle Performance Vector Signal Analyzer

Appendix - Using Visual Studio 2010

Microsoft Visual Studio 2010 has slight differences compared to Visual Studio 2008
in creating projects.

COM Interop Libraries that are added as References to projects in Visual Studio
2010 default to Embed Interop Types : True which leads to compilation errors. This
usually leads to two errors on the following line of code, C# is used as an example.

AgMB393 driver = new AgMB393d ass();

The compilation errors would be:

The type 'Agil ent. AgMB393. I nt er op. AgMP393C ass' has no
constructors defined.

Interop type ' Agilent. AgM393. I nt er op. AgMB393Cl ass' cannot be
enbedded. Use the applicable interface instead.

To fix this compilation error, right-click on the AQM9393Lib in the project
References, and edit the Properties. Change the Embed Interop Types field to
"False".

> [=d| Properties
4 | References
<3 AgM3393Lib
<3 wiDriverLib
<3 Microsoft.CSharp
<3 Systemn
<3 Systern.Core
< Systern.Data

l-"@ Solution Explorer

m

Properties -~ [
Agilent.AgM9393.Interop Reference Properties
g 21 =]
(Mame] Agilent.AgMO303.Interop
Copy Local False
Culture]
Description VI Aght9393 0.2 Type Library
| Embed Intercp Types False
File Type ActiveX
Identity {BE22FEE1-02B9-48E9-9857-6072C2F7206
Isolated False
Path Chowindowshassembhyh GAC_32VAgilent.s
Resolved True
Strong Mame True
Yersion 0200

Keysight M9393A PXle Performance Vector Signal Analyzer

68

69

Glossary

- ADE (application development environment) — An integrated suite of

software development programs. ADEs may include a text editor, compiler,
and debugger, as well as other tools used in creating, maintaining, and
debugging application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An APl is a well-defined set of set
of software routines through which application program can access the
functions and services provided by an underlying operating system or
library. Example: IVI Drivers

C# (pronounced "C sharp") — C-like, component-oriented language that
eliminates much of the difficulty associated with C/C++.

Direct I/0 — commands sent directly to an instrument, without the benefit
of, or interference from a driver. SCPI Example: SENSe:VOLTage:RANGe:
AUTO Driver (or device driver) — a collection of functions resident on a
computer and used to control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an
application program and loaded only when needed, thereby reducing
memory requirements. The functions or data in a DLL can be simultaneously
shared by several applications.

Input/Output (I/0) layer — The software that collects data from and issues
commands to peripheral devices. The VISA function library is an example of
an 1/0 layer that allows application programs and drivers to access
peripheral instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver
model defined by the IVI Foundation that enables engineers to exchange
instruments made by different manufacturers without rewriting their code.
www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — VI COM presents
the IVI driver as a COM object in Visual Basic. You get all the intelligence
and all the benefits of the development environment because VI COM does
things in a smart way and presents an easier, more consistent way to send
commands to an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software
components is analogous to that of hardware components: as long as
components present the same interface and perform the same functions,
they are interchangeable. Software components are the natural extension of
DLLs. Microsoft developed the COM standard to allow software
manufacturers to create new software components that can be used with an
existing application program, without requiring that the application be
rebuilt. It is this capability that allows T&M instruments and their COM-
based IVI-Component drivers to be interchanged.

Keysight M9393A PXle Performance Vector Signal Analyzer

http://www.ivifoundation.org

- .NET Framework — The .NET Framework is an object-oriented API that
simplifies application development in a Windows environment. The .NET
Framework has two main components: the common language runtime and
the .NET Framework class library.

- VISA (Virtual Instrument Software Architecture) — The VISA standard was
created by the VXIplug&play Foundation. Drivers that conform to the
VXlIplug&play standards always perform 1/0 through the VISA library.
Therefore if you are using Plug and Play drivers, you will need the VISA 1/0
library. The VISA standard was intended to provide a common set of
function calls that are similar across physical interfaces. In practice, VISA
libraries tend to be specific to the vendor's interface.

= VISA-COM — The VISA-COM library is a COM interface for I/0 that was
developed as a companion to the VISA specification. VISA-COM 1/0 provides
the services of VISA in a COM-based API. VISA-COM includes some higher-
level services that are not available in VISA, but in terms of low-level I/0
communication capabilities, VISA-COM is a subset of VISA. Agilent VISA-
COM is used by its IVI-Component drivers and requires that Agilent VISA
also be installed.

Keysight M9393A PXle Performance Vector Signal Analyzer 70

71

References

. Understanding Drivers and Direct I/0, Application Note 1465-3 (Keysight

Part Number: 5989-0110EN)

. Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam,

Victor Grothen and Doug Olney, Keysight Technologies, Santa Rosa, CA,
April 15, 2013, Microwave Journal

. Accelerate Development of Next Generation 802.11ac Wireless LAN

Transmitters-Overview, Application Note (Keysight Part Number: 5990-
9872EN)

. www.ivifoundation.org

Keysight M9393A PXle Performance Vector Signal Analyzer

http://www.ivifoundation.org

This information is subject to change
without notice.

© Keysight Technologies 2014 - 2016
Edition 2.1, May, 2016

M9393-90007

KEYS'G HT www.keysight.com

TECHNOLOGIES

http://www.keysight.com

	M9393A Programming Guide
	What You Will Learn in this Programming Guide
	Related Websites
	Related Documentation
	Additional Related Documentation

	Documentation Map
	Overall Process Flow

	Installing Hardware, Software, and Licenses
	APIs for the M9393A PXIe VSA
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Instrument-Specific Hierarchies for the M9393A
	Naming Conventions Used to Program IVI Drivers

	Creating a Project with IVI-COM Using C-Sharp
	Step 1 - Create a Console Application
	Step 2 - Add References
	Step 3 - Add Using Statements
	To Access the IVI Drivers Without Specifying or Typing The Full Path

	Step 4 - Create Instances of the IVI-COM Drivers
	Step 5 - Initialize the Driver Instances
	Step 5 - Initialize the Driver Instances
	Initialize() Options
	Initialize() Parameters
	M9300A Reference Sharing
	Example: M9300A PXIe Reference with M9381A PXIe VSG
	Example: M9300A PXIe Reference with M9393A PXIe VSA
	Example: M9300A PXIe Reference Shared With Both Modules

	Resource Names

	Step 6 - Write the Program Steps
	Step 7 - Close the Driver
	Step 8 - Building and Running a Complete Program Using Visual C-Sharp
	Example Program 1- Code Structure
	Example Program 1- How to Print Driver Properties, Check for Errors, and Close Driver Sessions

	Disclaimer

	Working with PA FEM Measurements
	Test Challenges Faced by Power Amplifier Testing
	Performing a Channel Power Measurement, Using Immediate Trigger
	Example Program 2- Code Structure
	Example Program 2 - Pseudo-code
	Example Program 2 - Pseudo-code
	Using FFT Acquisition Mode in Channel Power Measurements

	Example Program 2 - Channel Power Measurement Using Immediate Trigger
	Disclaimer

	Performing a WCDMA Power Servo and ACPR Measurement
	Example Program 3 - Code Structure
	Example Program 3 - Pseudo-code
	Example Program 3 - WCDMA Power Servo and ACPR Measurement

	Making Harmonic Measurements with the M9393A VSA
	Using the M9393A with the Resource Manager (M9000) and Modular X-Apps (M90XA)

	M9393A List Mode
	List Mode Set Up

	M9393A Programming Advanced Topics - Hints only
	Extending the RF Frequency Range (3.6 GHz to 50 GHz)
	Attaining Higher IF Bandwidths Using a Wideband Digitizer
	Performing Data Streaming With an External Wideband Digitizer
	Understanding API for Peer-to-Peer Support

	Differences between the M9391 and M9393
	Appendix - Verify Instruments Connect Pass Self-Test are Updated
	Verify that VSG 1 is Connected, Passes Self-Test, and Contains up to Date Firmware
	Verify that VSA 1 is Connected, Passes Self-Test, and Contains up to Date Firmware

	Appendix - Using Visual Studio 2010
	Glossary
	References

